국가 기후변화 표준 시나리오[지역 기후 모델/통계적 상세화]

모

○ 생산기관: 기후변화 대비 수자원 적응기술 개발 연구단(AR5 기반 표준 기후/수문 시나리오 생산)
○ 공간영역: 한반도 60개 ASOS 관측소
○ 사용모델: IPCC 채택 13 전지구기후모형(GCM)

생산 목적
○ 수자원 분야 기후변화 적용 정책 수립에 활용하기 위한 공인된 일반위 기후변화 시나리오 상세화 자료 생산

세부 내용
○ 26개 GCM에 대한 3개 변수(강수량, 최고기온, 최저기온) 및 26개 GCM 중 10개 GCM에 대한 추가변수(풍속, 상대습도, 일사량) 자료 수집
○ 한반도 Historical 30년(1976~2005) 관측 자료가 존재하는 60개 ASOS 지점 선정
○ 공간적 상세화(Spatial Disaggregation) 수행 이후 극값을 포함한 모든 분위수에 대한 장기추세를 유지하면서 편이보정을 수행할 수 있도록 고안된 Quantile Delta Mapping(QDM)을 활용하는 NCL 및 Fortran 기반 SDQDM 기법 적용 및 상세화 자료 생산
○ 한반도 영역에 대한 원시 GCM 및 상세화 자료의 재현성 평가 및 미래 기간에 대한 불확실성 평가를 통한 13개 대표 GCM 선정
<table>
<thead>
<tr>
<th>번호</th>
<th>관측소 ID</th>
<th>관측점명</th>
<th>북위</th>
<th>동경</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>속초</td>
<td>38°15'</td>
<td>128°33'</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>대관령</td>
<td>37°40'</td>
<td>128°43'</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>춘천</td>
<td>37°54'</td>
<td>127°44'</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>강릉</td>
<td>37°45'</td>
<td>128°53'</td>
</tr>
<tr>
<td>5</td>
<td>108</td>
<td>서울</td>
<td>37°34'</td>
<td>126°57'</td>
</tr>
<tr>
<td>6</td>
<td>112</td>
<td>인천</td>
<td>37°28'</td>
<td>126°37'</td>
</tr>
<tr>
<td>7</td>
<td>114</td>
<td>원주</td>
<td>37°20'</td>
<td>127°56'</td>
</tr>
<tr>
<td>8</td>
<td>119</td>
<td>수원</td>
<td>37°16'</td>
<td>126°59'</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>충주</td>
<td>36°38'</td>
<td>127°57'</td>
</tr>
<tr>
<td>10</td>
<td>129</td>
<td>서산</td>
<td>36°46'</td>
<td>126°29'</td>
</tr>
<tr>
<td>11</td>
<td>130</td>
<td>울진</td>
<td>36°59'</td>
<td>129°24'</td>
</tr>
<tr>
<td>12</td>
<td>131</td>
<td>창주</td>
<td>36°38'</td>
<td>127°26'</td>
</tr>
<tr>
<td>13</td>
<td>133</td>
<td>대전</td>
<td>36°22'</td>
<td>127°22'</td>
</tr>
<tr>
<td>14</td>
<td>135</td>
<td>주 обращение</td>
<td>36°13'</td>
<td>127°59'</td>
</tr>
<tr>
<td>15</td>
<td>138</td>
<td>포항</td>
<td>36°01'</td>
<td>129°22'</td>
</tr>
<tr>
<td>16</td>
<td>140</td>
<td>군산</td>
<td>36°00'</td>
<td>126°45'</td>
</tr>
<tr>
<td>17</td>
<td>143</td>
<td>대구</td>
<td>35°53'</td>
<td>128°37'</td>
</tr>
<tr>
<td>18</td>
<td>146</td>
<td>전주</td>
<td>35°49'</td>
<td>127°09'</td>
</tr>
<tr>
<td>19</td>
<td>152</td>
<td>울산</td>
<td>35°33'</td>
<td>129°19'</td>
</tr>
<tr>
<td>20</td>
<td>156</td>
<td>광주</td>
<td>35°10'</td>
<td>126°53'</td>
</tr>
<tr>
<td>21</td>
<td>159</td>
<td>부산</td>
<td>35°06'</td>
<td>129°01'</td>
</tr>
<tr>
<td>22</td>
<td>162</td>
<td>동영</td>
<td>34°50'</td>
<td>128°26'</td>
</tr>
<tr>
<td>23</td>
<td>165</td>
<td>목포</td>
<td>34°49'</td>
<td>126°22'</td>
</tr>
<tr>
<td>24</td>
<td>168</td>
<td>여수</td>
<td>34°44'</td>
<td>127°44'</td>
</tr>
<tr>
<td>25</td>
<td>170</td>
<td>환도</td>
<td>34°23'</td>
<td>126°42'</td>
</tr>
<tr>
<td>26</td>
<td>184</td>
<td>제주</td>
<td>33°30'</td>
<td>126°31'</td>
</tr>
<tr>
<td>27</td>
<td>188</td>
<td>성산</td>
<td>33°23'</td>
<td>126°52'</td>
</tr>
<tr>
<td>28</td>
<td>189</td>
<td>서귀포</td>
<td>33°14'</td>
<td>126°33'</td>
</tr>
<tr>
<td>29</td>
<td>192</td>
<td>진주</td>
<td>35°09'</td>
<td>128°02'</td>
</tr>
<tr>
<td>30</td>
<td>201</td>
<td>강화</td>
<td>37°42'</td>
<td>126°26'</td>
</tr>
</tbody>
</table>

표 1. 상세화 적용 기상청 종관기상관측소(ASOS) 리스트
표 2. 사용 Global Climate Models (GCMs) 설명

<table>
<thead>
<tr>
<th>No</th>
<th>GCMs</th>
<th>Resolution (degree)</th>
<th>Institution</th>
<th>Variables of Historical & RCP4.5 & RCP8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CanESM2</td>
<td>2.813 x 2.791</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>2</td>
<td>CESM1-BGC</td>
<td>1.250 x 0.942</td>
<td>National Center for Atmospheric Research</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>3</td>
<td>CMCC-CM</td>
<td>0.750 x 0.748</td>
<td>Centro Euro-Mediterraneo per I Cambiamenti Climatici</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>4</td>
<td>CMCC-CMS</td>
<td>1.875 x 1.865</td>
<td></td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>5</td>
<td>CNRM-CM5</td>
<td>1.406 x 1.401</td>
<td>Centre National de Recherches Meteorologiques</td>
<td>○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>6</td>
<td>GFDL-ESM2G</td>
<td>2.500 x 2.023</td>
<td>Geophysical Fluid Dynamics Laboratory</td>
<td>○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>7</td>
<td>HadGEM2-AO</td>
<td>1.875 x 1.250</td>
<td>Met Office Hadley Centre</td>
<td>○ ○ ○</td>
</tr>
<tr>
<td>8</td>
<td>HadGEM2-ES</td>
<td>1.875 x 1.250</td>
<td></td>
<td>○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>9</td>
<td>INM-CM4</td>
<td>2.000 x 1.500</td>
<td>Institute for Numerical Mathematics</td>
<td>○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>10</td>
<td>IPSL-CMEA-LR</td>
<td>3.750 x 1.895</td>
<td>Institut Pierre–Simon Laplace</td>
<td>○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>11</td>
<td>IPSL-CM5A-MR</td>
<td>2.500 x 1.268</td>
<td>Institut Pierre–Simon Laplace</td>
<td>○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>12</td>
<td>MRI-CGCM3</td>
<td>1.125 x 1.122</td>
<td>Meteorological Research Institute</td>
<td>○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>13</td>
<td>NorESM1-M</td>
<td>2.500 x 1.895</td>
<td>Norwegian Climate Centre</td>
<td>○ ○ ○</td>
</tr>
</tbody>
</table>

Figure 1. 기후변화 시나리오에 따른 한반도 관측소 평균 연강수량 전망
Figure 2. 기후변화 시나리오에 따른 한반도 60개 관측소 계절별 강수량 전망

(a) 근미래: 2010~2040
(b) 중간미래: 2041~2070
(c) 먼미래: 2071~2100

범례

- historical
- rcp45
- rcp85
Figure 3. 기후변화 시나리오에 따른 한반도 60개 관측소 평균 월별 강수량 전망

(a) 과거 재현성 평가
(b) 근미래: 2010~2039
(c) 중간미래: 2040~2069
(d) 먼미래: 2070~2099
○ 최고온도

Figure 4. 기후변화 시나리오에 따른 한반도 60개 관측소 평균 최고기온 전망
Figure 5. 기후변화 시나리오에 따른 한반도 60개 관측소 재절별 최고기온 전망
Figure 6. 기후변화 시나리오에 따른 한반도 관측소 평균 월별 최고기온 전망

(a) 과거 재현성 평가

(b) 근미래: 2010~2039

(c) 중간미래: 2040~2069

(d) 먼미래: 2070~2099
○ 최저온도

Figure 7. 기후변화 시나리오에 따른 한반도 60개 관측소 평균 최저기온 전망
Figure 8. 기후변화 시나리오에 따른 한반도 관측소 계절별 최저기온 전망

(a) 근미래 : 2010~2040

(b) 중간미래: 2041~2070

(c) 먼미래: 2071~2100

범례
- historical
- rcp45
- rcp85
관련 사업

○ 자료 생산

- 기후변화 대비 수자원 적응기술 개발/AR5 기반 MME 기후 및 고해상도 중장기 수문 시나리오 생산 및 평가기술 개발
 (세종대학교 산학협력단/APEC기후센터, 2014.09.15.~2019.06.14.)

Figure 9. 기후변화 시나리오에 따른 한반도 관측소 평균 월별 최저기온 전망
 국가 기후변화 표준 시나리오 활용 현황

- 기상청 국가 기후변화 표준 시나리오 활용 현황
 - 기상청 생산 GCM 자료인 HadGEM-AO 전망 자료를 SQM 상세화 입력자료로 사용
- 신청 시나리오 활용 현황
 - 기후변화 적용 댐 재개발 실행프레임워크 개발
 - 기후변화에 따른 권역별 수자원시설 용수공급능력 평가기술 개발
 - 기후변화 대응 저수지 운영 기준 및 기술 개발
 - 기후변화 대응 물 공급 예비율 정립 기술 개발
 - 기후변화 대응을 위한 가뭄 시 댐 군의 용수제한공급 방안 연구
 - 유역 및 권역별 Emergency Plan 수립
 - 전국 수량, 수질, 유역환경을 고려한 유역건전성 평가 기술 개발
 - 기후변화 적용 수자원 취약성 통합평가 시스템 개발

 관련 보고서 및 논문

- 상세화 자료 생산 기법 관련 보고서 및 논문
 - 생산 기법 설명 보고서

<table>
<thead>
<tr>
<th>No.</th>
<th>보고서 제목</th>
<th>발주처</th>
<th>연구기간</th>
<th>내용 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>수자원의 기후변화전망 활용을 위한 AR5 기후모델의 성능평가 및 상세 기후 및 수문 시나리오 생산기술 개발</td>
<td>국토교통부</td>
<td>2017</td>
<td>상세화 기법 이론 및 적용성 평가</td>
</tr>
</tbody>
</table>

- 상세화 기법 설명 논문

<table>
<thead>
<tr>
<th>No.</th>
<th>논문 정보</th>
<th>구분 국내/SCI</th>
<th>내용 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>음형일, 2016, 기후변화 적용전략 수립을 위한 상세화모형의 적용, 물과미래, 49(12): 41-46</td>
<td>기타</td>
<td>BCSD의 여러 판의보정 기법(QM, QDM)의 장기추계 왜곡현상 비교를 통한 QDM의 장점 제시</td>
</tr>
<tr>
<td>2</td>
<td>Eum, H. I., Cannon, A. J., & Murdock, T.</td>
<td>SCI</td>
<td>4가지 통계학적 상세화 기법</td>
</tr>
</tbody>
</table>
- 활용 보고서

<table>
<thead>
<tr>
<th>No.</th>
<th>보고서 제목</th>
<th>발주처</th>
<th>연구 기간</th>
<th>전망 기간</th>
<th>사용 변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>기후변화 대비 수자원시설물의 물공급 예비율 기술 개발</td>
<td>국토교통부</td>
<td>2017</td>
<td>2010~2100</td>
<td>강수량, 유입량</td>
</tr>
</tbody>
</table>

- 활용 논문

<table>
<thead>
<tr>
<th>No.</th>
<th>논문 정보</th>
<th>사용 RCP</th>
<th>전망 기간</th>
<th>사용변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>정세웅, 박형석, 2017. 극한 사상에 대한 탁수저감 및 관리기술 개발 소개, 물과미래, 50(6): 50-57</td>
<td>RCP4.5</td>
<td>2013~2099</td>
<td>강수량, 최고기온, 최저기온</td>
</tr>
<tr>
<td>2</td>
<td>도연수, 김광섭, 2018. AR5 기후변화 시나리오에 따른 소양강댐 유역 텅 유입량 및 증발산량의 변화 분석, 한국농공학회논문집, 60(1): 89-99</td>
<td>RCP4.5, RCP8.5</td>
<td>2011~2099</td>
<td>강수량, 최고기온, 최저기온</td>
</tr>
<tr>
<td>4</td>
<td>홍현표, 박시연, 김태웅, 이주헌, 2018. 미래 극한 가뭄전망을 위한 CMIP5 GCMs 평가, 한국수자원학회지, 51(7): 617-627</td>
<td>RCP4.5, RCP8.5</td>
<td>2011~2099</td>
<td>강수량</td>
</tr>
<tr>
<td>7</td>
<td>박지훈, 조재필, 이은정, 정임국, 2017. CMIP5 GCMs와 추정방법에 따른 우리나라 기준증발산량평가, 한국농총계획학회지, 23(4):153-168</td>
<td>10 CMIP5 GCMs, RCP4.5 & RCP8.5</td>
<td>2011~2099</td>
<td>최고기온, 최저기온, 풍속, 상대습도, 일사량</td>
</tr>
</tbody>
</table>

기타사항

- 관련 행사

 - 국내 통계적 Downscaling 전문가 포럼, 제1회 기후변화 수자원 적응기술 포럼, 2012.03.27., 서울 메이필드 호텔
 - 국내 통계적 상세화기법 적용사례 진단 및 개선 / 표준화 방안 제시, 제4회 기후 변화 수자원 적응기술 포럼, 2015.08.10.-11. 부산 APEC 기후센터
 - 국내 통계적 Downscaling 전문가 포럼, 제8회 기후변화 수자원 적응기술 포럼, 2016.05.12., 서울 LW컨벤션 다이아몬드홀