OBSERVATION OF ATMOSPHERIC RADON-222 WITH A NEW MEASURING SYSTEM AT THE WMO/GAW MONITORING STATIONS IN JAPAN

By
Kazuhiro TSUBOI,
(Meteorological Research Institute, Japan)

Akira WADA (MC), Souhei MURAYAMA (AIST), Hidekazu MATSUEDA, and Yousuke SAWA

Topics

1) Briefly overview for the implications of Rn observation.

2) Briefly introduction of newly developed atmospheric Rn measuring system.

3) Observed results for temporal and spatial variations of Rn over the western North Pacific
In the Asian regions, anthropogenic emissions are rapidly increasing due to the economic growth. The Asia has a large potential for future emissions of greenhouse gases and other pollutions.

As shown in the model, widespread increased ozone with Asian outflow is produced by the photochemistry.

The air quality reduction causes the various impacts such as human health, agriculture, and regional climate.

For chemical weather forecasting, more understandings of transport mechanism is required.
Radon: Useful chemical tracer for Asian continental outflow

- Radon-222 (Rn-222) is a useful chemical tracer for identifying continental air masses.
- Because it releases from the soil to the atmosphere, and its half-life time of 3.8 days for only radioactive decay is suitable for tracing the travel of the Asian outflow over the western North Pacific.
A commercially available radon monitor in Japan was insufficient for extremely low level at Minamitorishima station, where Rn background level is less than 0.5 Bq/m3.

We had developed a new radon measuring system using a high sensitive PIN photodiode by a co-operation research program with AIST and our Institute.

As shown in this picture, our Rn system is relatively compact for installing in the limited space of the observatory, and routinely operated by automated observations.
In our electrostatic method, Po positive ions are collected on PIN photodiode by high negative voltage, where α-rays from respective radon progenies are separately counted depending on their energy.

Counting rates of α-rays from radon progenies are used to calculate the Rn activity.

Using this system, continuous and automated Rn measurement can be made.
Comparison of alpha spectrum

- Our Rn monitor can sharp-separately detect the peak of ^{218}Po with net short half life of 3.1 min after ^{222}Rn decay, which is useful for high time-resolution measurement.
- Our Rn monitor can distinguish ^{218}Po from ^{210}Po, with long total half life (~22 yr) accumulated on the detector.
- Such good peak separation reduces effects of ^{210}Po on the ^{218}Po counting rate, and prevents our Rn monitor from overestimating Rn activity even after long time use.
- We decided to calculate Rn concentration only from ^{218}Po counting rate in this study.
Dependence of calibration factor (count hr$^{-1}$)/(Bq m$^{-3}$) on high voltage

To collect Po positive ions, PIN photodiode is charged by high negative voltage. Calibration factor is found to be almost constant at <-2500 V for both chambers. Thus, we set the voltage of -2500 V for the both 32L and 16L chambers.
Results of Calibration

<table>
<thead>
<tr>
<th></th>
<th>32L</th>
<th>16L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Factor/counts h^{-1}(Bq m^{-3})^{-1}</td>
<td>31.8</td>
<td>19.6</td>
</tr>
<tr>
<td>Counting Efficiency</td>
<td>0.27</td>
<td>0.32</td>
</tr>
<tr>
<td>Limit of detection (LD) /Bqm^{-3} for 1h</td>
<td>0.16</td>
<td>0.20</td>
</tr>
</tbody>
</table>

This table shows the results of the calibration at Nagoya University in Japan.

It was found that Calibration factor is better for 32 L than for 16 L, reflecting its volume dependence.

Our compact Rn 222 measuring system has the potential to be widely used for high time-resolution measurements of low-level Rn222.
In our Rn observation network, three Japanese GAW stations of Ryori, Yonagunijima and Minamitorishima are used, because various greenhouse gases are operationally monitored by JMA.

Chichijima is a research site, where Rn measurements are sometimes made during the campaign observation.

This network is suitable for the study of Asian continental outflow, because the distance from the continent is different each other.
The Rn observation started at Minamitorishima since 2007.
After that, Rn measurements at other stations of Chichijima, Yonagunijima and Ryori are collected.
For all of the stations, not only a distinct seasonal variation but also numerous Rn enhanced peaks are well captured.
These Rn enhancement events indicate the signals of the Asian continental outlow.
The time series of Rn peaks from Ryori to Minamitorishima indicates the Rn plume is moving toward the east.

It is clearly revealed in the weather charts that the eastward movement of the Rn plume is driven by the cold front system associated with the development of the moving cyclone.

We found that this frontal transport is responsible for most of the Rn events.
Validation of model by the observed Rn

3D Chemical Transport Model
NIRE-CTM-96 (S. Taguchi, 1996)
Driven by NCEP/NCAR reanalysis Data
Radon Emission (D. Jacob et al, 1997)

1.0 atom cm\(^{-2}\) s\(^{-1}\) (60°S - 60°N)
0.5 atom cm\(^{-2}\) s\(^{-1}\) (60°N - 70°N, without Greenland)
0 atom cm\(^{-2}\) s\(^{-1}\) (Ocean)

To confirm the Rn increased events, CTM simulation was made to reproduce the observed Rn at Minamitorishima station, as shown in the upper panel.
The left panel clearly shows that enhanced Rn is widespread along with the cold front over the western North Pacific.
These results indicates that Rn measurements are useful for validating the transport processes of the 3-D model.
Tagged tracer experiment by 3-D model

Contribution (%)

Europe Russia NE China SE China W China Japan & Korea
peak A 9.0 35.5 32.6 0.3 6.4 14.3
Peak B 4.0 10.2 40.0 21.2 12.2 11.8

Main source regions
MNM: Russia and NE China
YON: NE China and SE China

The tagged tracer experiment by using the model is also available for quantitatively estimating the source regions.
Comparison with Other Trace Gases

- High resolution measurements of Rn well captured a synoptic-scale increase due to the intrusion of continental air masses.

- It is also of interest that all of the Rn peaks are well coincided with the increased trace gases of CO2, CO and CH4.

- These tight relations demonstrate the transport of continental air masses passing over the anthropogenic-emissions regions over the continent.

- Thus, the enhancement ratios could provide information of the air quality over the continent.

- Also, more observations could allow us to clarify the long-term change in the Asian continental emissions.
Conclusions

• High sensitive radon measuring system has been developed. This system detected successfully seasonal as well as synoptic-scale variations over the western North Pacific.

• Synoptic-scale variation of radon was brought by a passage of cold front associated with a moving cyclone.

• For the 3-D model simulation, widespread Rn from the Asian continental outflow is well illustrated.

• Tight relations between Rn and other trace gases could be used for flux estimations on the Asian continent source region.

【Reference】
日変動

大気中ラドン濃度の平均日変動

つくばで観測される明瞭な日変動は、南鳥島、父島および与那国島ではみられない。
綾里ではわずかに日変動がみとめられた。

つるばで観測された大気中ラドン濃度の平均日変動

2010年1月につるばで観測された大気中ラドン濃度の平均日変動

綾里

与那国島

父島

南鳥島
季節変動

南鳥島、父島、与那国島のラドンの季節変動は北西風の割合と高い相関がある。一方綾里では風向との相関はなかった。
Comparison with other Rn monitors

<table>
<thead>
<tr>
<th></th>
<th>This Work</th>
<th>ANSTO** (Cape Grim)</th>
<th>Nagoya Univ.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSTO**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagoya Univ.*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Electrostatic</td>
<td>Two filter</td>
<td>Electrostatic</td>
</tr>
<tr>
<td>Detector</td>
<td>PIN photodiode</td>
<td>ZnS(Ag)</td>
<td>ZnS(Ag)</td>
</tr>
<tr>
<td>Counting efficiency</td>
<td>0.32 & 0.27</td>
<td>0.33</td>
<td>0.3</td>
</tr>
<tr>
<td>Separate detection of 218Po</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chamber/L</td>
<td>16 & 32</td>
<td>9000</td>
<td>16.8</td>
</tr>
<tr>
<td>Flow rate/L min$^{-1}$</td>
<td>3~5</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>LD*/Bq m$^{-3}$**</td>
<td>0.20 & 0.16</td>
<td>0.003**</td>
<td>0.35</td>
</tr>
<tr>
<td>Time resolution/h</td>
<td>0.5~1</td>
<td>>1.5</td>
<td>1</td>
</tr>
</tbody>
</table>

** S. Whittlestone and W. Zahorowski, 1998, JGR.
*** LD represents limit of detection defined by Currie (1968).

- Counting efficiency: almost similar. LD: worse than ANSTO, better than Nagoya.
- Time resolution: better than other monitors.
- Compact system: small chamber, low flow rate with a small pump.
- Separately detect 218Po: high time resolution measurement & long time use.