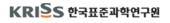
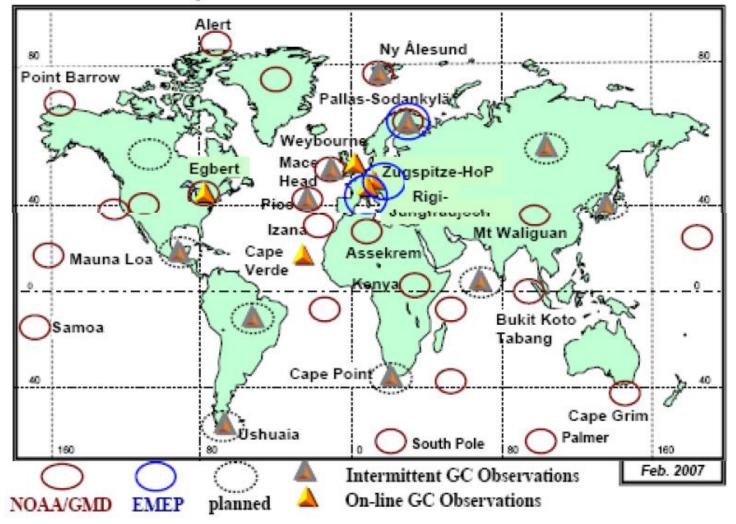
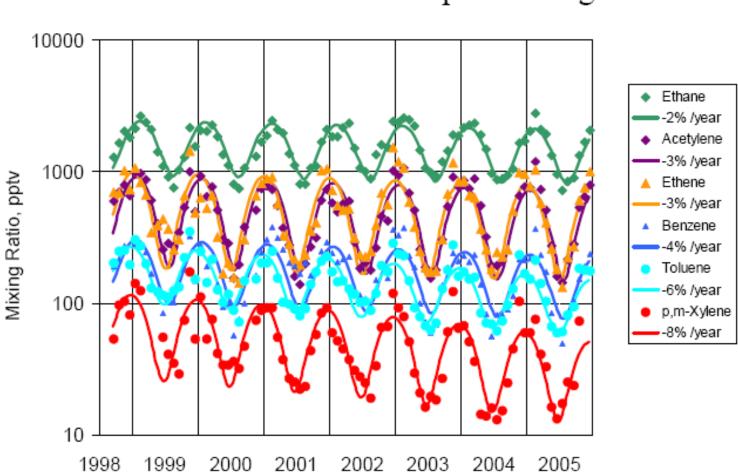
## Development of International VOC Standards for GAW Measurement of Background Monitoring on Earth




Counting number of molecules in gas phase in cylinder

#### Gwi Suk Heo, Yong Doo Kim, Mi-Eon Kim


## Background WMO\_GAW - BIPM GAWG


#### GAW - VOC compounds and objectives, GAW report 171

| Molecule     | Lifetime (1E6 OH) | Importance / Changing Atmosphere                                                       |  |  |
|--------------|-------------------|----------------------------------------------------------------------------------------|--|--|
| Ethane       | 1.5 months        | <ul> <li>Atmospheric composition, Trends</li> </ul>                                    |  |  |
| Propane      | 11 days           | <ul> <li>Source attribution (HC pattern): biomass burning, traffic, oceans,</li> </ul> |  |  |
| Acetylene    | 15 days           | Ozone production                                                                       |  |  |
| I,n-Butane   | 5 days            | Oxidizing capacity                                                                     |  |  |
| I,n-Pentane  | 3 days            | <ul> <li>Chemistry (HC ratios): Role of OH / O3 / NO3 / halogen chemistry</li> </ul>   |  |  |
| Benzene      | 10 days           | Precursor to particulates                                                              |  |  |
| Toluene      | 2 days            | Sources of methane (HC pattern)                                                        |  |  |
| Isoprene     | 3 hours           | Biosphere products                                                                     |  |  |
| Terpenes     | 1-5 hours         | <ul> <li>Sensitive to temperature/land use/climate change</li> </ul>                   |  |  |
|              |                   | Precursors to O3, HCHO, organic aerosol                                                |  |  |
|              |                   | Oxidizing capacity                                                                     |  |  |
| Formaldehyde | 1 day             | Indicator of VOC/isoprene oxidation                                                    |  |  |
|              |                   | Biomass burning                                                                        |  |  |
|              |                   | Comparison with satellites                                                             |  |  |
| Acetone      | 2 months          | Abundant oxidation product                                                             |  |  |
|              |                   | <ul> <li>Free radical source in the upper troposphere</li> </ul>                       |  |  |
| Methanol     | 12 days           | Sources in the biosphere                                                               |  |  |
| Ethanol      | 4 days            | Abundant oxidation product                                                             |  |  |
|              |                   | <ul> <li>Tracer of alternative fuel usage</li> </ul>                                   |  |  |
| Acetonitrile | 1.5 year          | Biomass burning                                                                        |  |  |
| DMS          | 2 day             | Major natural sulphur source                                                           |  |  |
|              |                   | Sulphate aerosol / climate                                                             |  |  |
|              |                   | Tracer of marine bioproductivity                                                       |  |  |
|              |                   |                                                                                        |  |  |



### **Prospective GAW VOC Network**





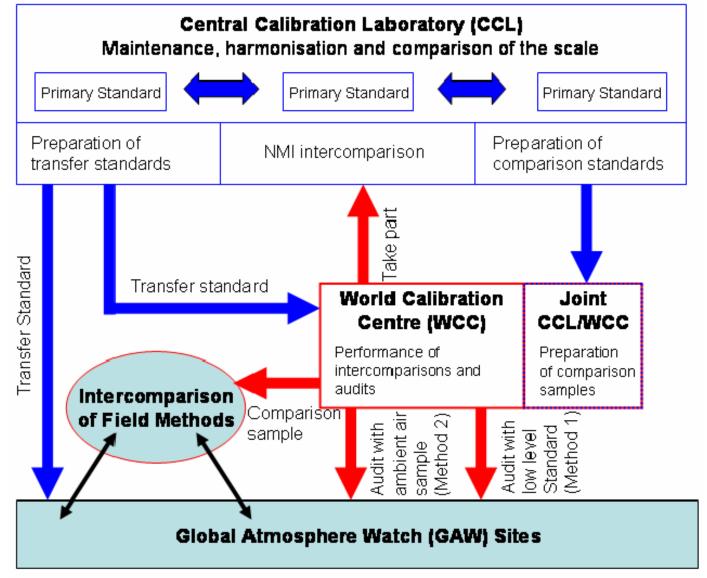
VOC - Trends at Hohenpeissenberg

## VOC QA/QC

#### GAW

- Report 111, 171
- Intercomp.+audits by WCC
- training (GAWTEC)

#### EMEP


- Manual (EMEP/CCC-1/95)
- intercomp.+audits by NILU
- data screening by NILU and local laboratories

### VOC Data Quality Objectives

uncertainty VOC: 10 - 20 %

uncertainty VOC 15-25%

no common calibration gas standards no accepted QA / QC protocol no SOP's



### The GAW-VOC Target Compounds

Standards for C2-C9 hydrocarbons are readily available

Proposed tasks for preparing a world standard for other VOC

 prepare 4-component mixtures of methanol, ethanol, acetone, and acetonitrile at 0.25-2.5 ppm in N2 in gas cylinders

 prepare adsorption tubes loaded with defined amounts of monoterpene mixtures in the ng range

- prepare monoterpene mixture in N2 at about 0.25 ppm in gas cylinder
- · develop calibration system for CH2O and DMS

 develop a dynamic dilution device to dilute standards from high pressure gas cylinders by a factor of 500 in air or N2, according to standard operating procedures

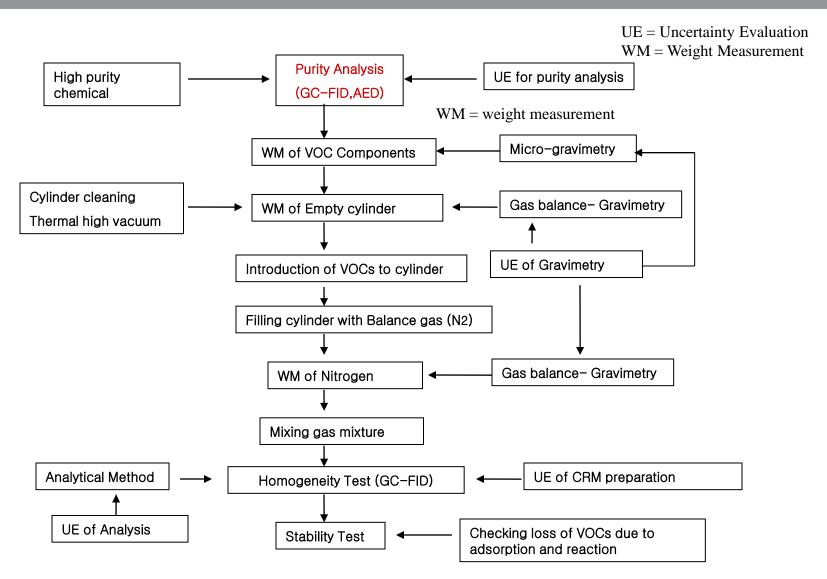
#### Action Plan

- 1. Components to be included in the C2-C9 NMHC standard [April 2007 done]
- 2. Agree on (tests for) calibration procedures for other VOC [April 2007 -> 07/2008]
- Agree to a schedule for comparisons of C2-C9 NMHC standards with participation of GAW-WCC, starting with EUROMET 886 [April 2007 - started]
- Develop and agree to a statistical approach that can relate the Degrees of Equivalence arising from comparisons organized according to the CIPM guidelines with the requirement for a "scale" for the GAW CCL. [June 2007 -> 07/2008].
- Agree to a strategy for dissemination of values for the "scale" and prepare an outline of a publication – (might lead to certificates with a GAW scale value as well as values from a NMI's own methodology!). [Oct 2007 –> 07/2008]
- 6. Memorandum of co-operation NMI, NIST, KRISS, NPL +? [Oct 2007 -> draft]



### Next Steps

- NIST, NMI-VFL and KRISS will have the other-VOC program on board (2009 ?)
- · NIST, NMI-VFL have started with Terpenes, Alcohols, Acetone
- Tasks and Responsibilities:
  - NMHCs and "scale": Martin Milton, NPL
  - Alcohols, Acetone: Rob Wessel, NMI-VFL
  - Monoterpenes: Jerry Roderick, NIST
  - DMS, Formaldehyde, Acetonitril: Jin Seog Kim, KRISS
- GAW will organize a Workshop GAW/GAWG in summer 2008 (2<sup>nd</sup> week of July?) at EMPA (Zürich, CH)
- GAW VOC intends to have a Workshop in summer 2008
- Have all CCLs in place 2010


## **Development of DMS and acetonitrile standards in KRISS**

Counting number of molecules in gas phase in cylinder



Gwi Suk Heo, Yong Doo Kim, Mi-Eon Kim

## Preparation Scheme of DMS CRM



# Uncertainty evaluation for preparation of low µmol/mol DMS CRM : Modeling Equation

### **Modeling Equation**

$$C_{DMS} = \frac{n_{DMS}}{(n_{DMS} + n_{N2})} \times 10^{6} \times f_{purity} \times f_{Ads} \times f_{Re} \times f_{S}$$

#### Where,

- C<sub>DMS</sub> : Concentration of DMS (µmole/mole)
- n<sub>DMS</sub> : Mole of DMS in CRM (mole),

#### n<sub>DMS</sub>=m<sub>DMS</sub>/M<sub>DMS</sub>

- m<sub>DMS</sub> : Amount of liquid DMS reagent in CRM (g)
- M<sub>DMS</sub> : Molecular weight of DMS (g/mole)
- n<sub>N2</sub> : Mole of N2 in CRM(mole),

#### $n_{N2} = m_{N2} / M_{N2}$

- m<sub>N2</sub> : Amount of N2 gas in CRM (g)
- M<sub>N2</sub> : Molecular weight of N2 (g/mole)

- f<sub>purity</sub>: Factor for purity of liquid DMS reagent
   f<sub>Ads</sub>:: Factor for adsorption loss of DMS in
   cylinder
- f<sub>Re</sub> : Factor for Preparation reproducibility of DMS CRM
- $\boldsymbol{f}_{S}$  : Factor for stability of DMS in cylinder

## Purity determination of DMS

#### Reagents

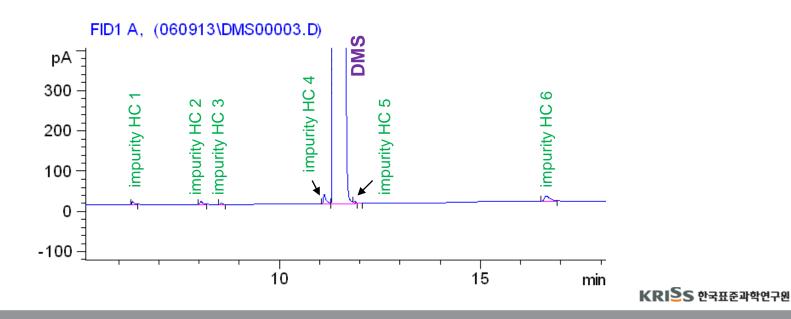
■ Dimethyl sulfide : anhydrous, ≥99.0% (Aldrich, USA)

#### Instruments

- GC-FID and GC-SCD (Agilent, 6890N)
- FT-IR (Bruker, IFS 120HR)

#### **Purity Measurement**

- Pure dimethyl sulfide
  - : Total hydrocarbons (GC-FID), Total sulfur (GC-SCD, FTIR),

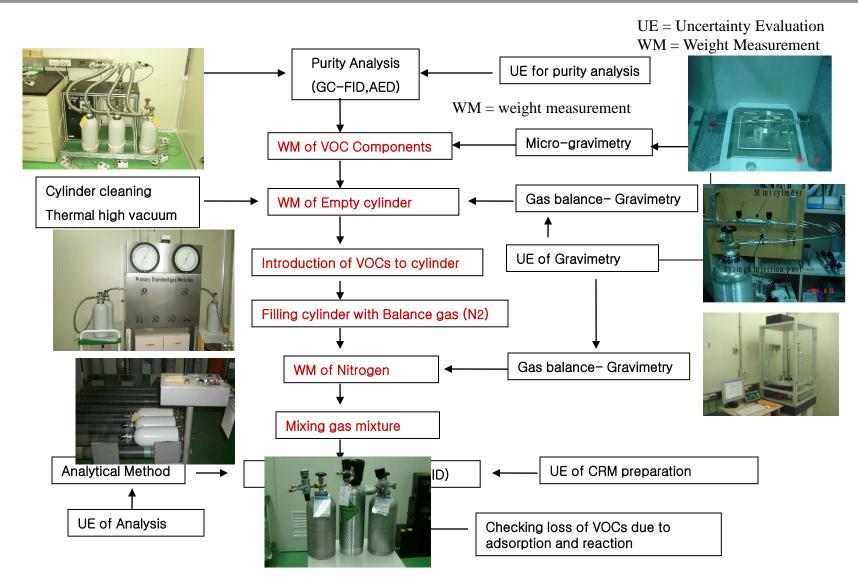

Moisture (Karl Fisher coulometer)

## Impurity Analysis of DMS by GC-FID

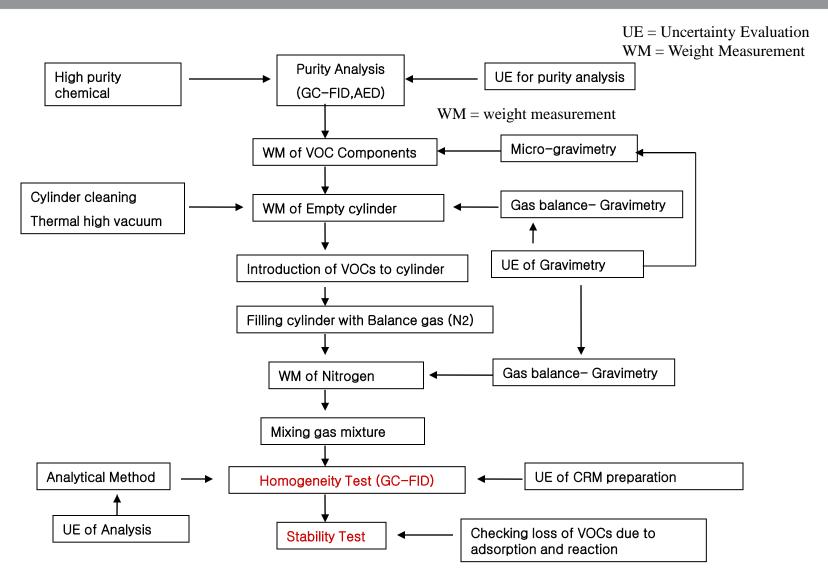
#### Measurements gas Total hydrocarbons

#### **Analysis conditions**

- Column : J&W GS-Q, 30 m x 0.53 mm , Carrier gas : 10 mL/nin
- Sample loop 1.0 mL, Sample injection 0.4 µL, Split ratio 2:1
- Sample valve Temp. : 150 ℃
- Detector : FID, Temp. : 250 °C
- GC oven Temp. : 100 °C (3 min)  $\rightarrow$  10 °C/min  $\rightarrow$  220 °C (4 min)




## Purity determination of DMS

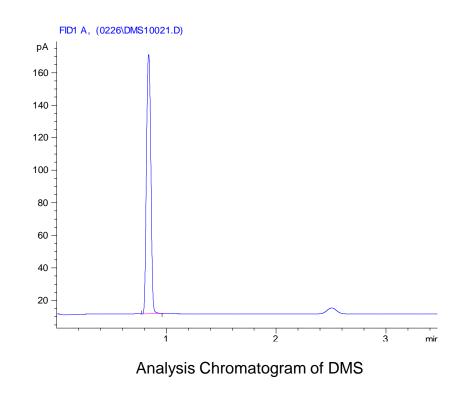

- Measurement techniques: GC-FID, GC-SCD, FTIR, Karl-Fischer coulometer
- **GC-FID** was used for analysis of total impurity hydrocarbons (4,063 µmol/mol)
- GC-SCD was used for analysis of total sulfur (<1 µmol/mol)</li>
- Karl-Fischer coulometer was used for analysis of moisture (1,471 µmol/mol)
- Therefore,

total of 0.1% of uncertainty was assigned to DMS purity result of 99.5%.

## **Preparation Scheme of DMS CRM**

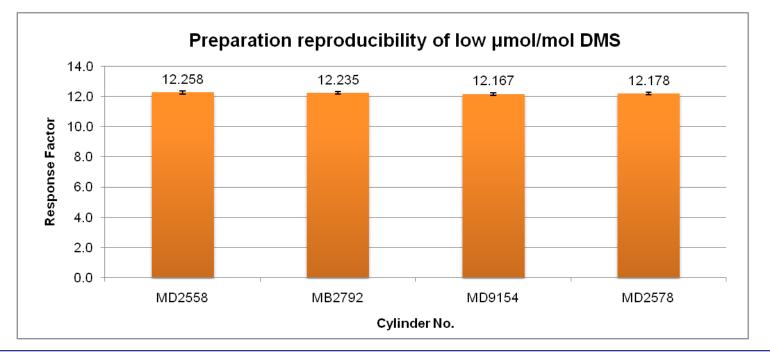


## Preparation Scheme of DMS CRM




## Preparation reproducibility test of DMS CRMs

## Preparation reproducibility of low µmol/mol level DMS gas standards was checked by GC-FID


#### **Analytical Conditions**

- Column : CP-Sil 5B, 25 m x 0.53 mm
   Carrier gas : N2,
- Injection : Sample valve temp. : 100 ℃, Sample loop 1.0 mL Sample flow 100 mL/min, Split ratio 20 :1
- GC oven Temp. 70 °C (3.5 min)
- Detector : FID, Temp. : 250 °C



## Preparation reproducibility of low µmol/mol DMS

#### Preparation reproducibility : 0.36 %



| Cylinder<br>No. | Conc. of<br>preparation<br>(µmol/mol) | Means<br>(± S.D) | RSD<br>(%) | Response<br>factor | Difference<br>(%) | Date of preparation |
|-----------------|---------------------------------------|------------------|------------|--------------------|-------------------|---------------------|
| MD2578          | 3.710                                 | 45.18            | 0.11       | 12.18              | 0.26              | 000628              |
| MD9154          | 5.440                                 | 66.19            | 0.12       | 12.17              | 0.35              | 000628              |
| MB2792          | 6.018                                 | 73.63            | 0.28       | 12.24              | -0.21             | 000628              |
| MD2558          | 6.443                                 | 78.98            | 0.10       | 12.26              | -0.40             | 991205              |
|                 |                                       |                  |            |                    | RSD(%)            | 0.36                |

# DMS loss test due to reaction with cylinder : immediate reaction, short term stability

Reaction with the inner surface of cylinder and cylinder valve

Very important to counting number of molecules getting out from cylinder: how many molecules are getting out without loss from cylinder?

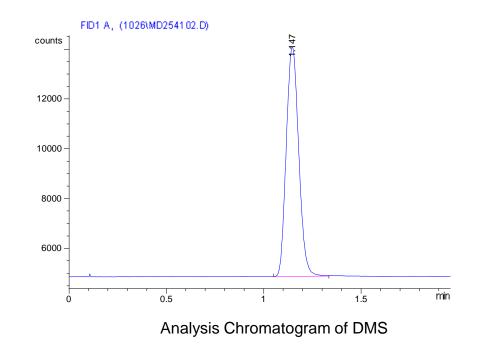
### Adsorption loss test of DMS during the preparation of CRMs Low µmol/mol CRM :

- Loss of DMS due to adsorption to inner surface of cylinder was evaluated by distributing equal amount of low micromole/mole DMS to other empty cylinder, then second cylinder again was distributed to another empty cylinder.
- The three cylinders were analyzed and compared their FID response factors to check the adsorption loss of DMS.
- Result : very small loss, 0.11 % loss at first distribution, 0.35 % loss at second distribution.

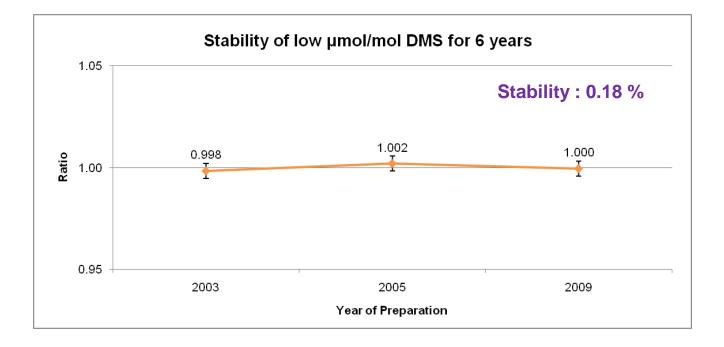
Better Standards, Better Life

## DMS loss test due to reaction with cylinder : immediate reaction, short term stability

#### Absorption result of 10 umol/mol Dimethyl sulfide


| 200103      |                      |                  |        |                        |               |                            |        |
|-------------|----------------------|------------------|--------|------------------------|---------------|----------------------------|--------|
| Cylinder No | Conc. of preparation | Means<br>(± S.D) | RSD(%) | <b>Response factor</b> | Differance(%) | Cylinder<br>pressure (psi) | _      |
|             |                      |                  |        |                        |               |                            | -      |
| DM9154      | 5.440                | 25604            | 0.12   | 4707                   |               | 700                        | Mother |
| MD6097      | 5.440                | 25542            | 0.14   | 4695                   | 0.24          | 700                        | First  |
| MD6092      | 5.440                | 25153            | 0.10   | 4624                   | 1.76          | 300                        | Second |
|             |                      |                  |        |                        |               |                            |        |
|             |                      |                  |        | actual loss(%)         | 0.11          | 1500                       | First  |
|             |                      |                  |        |                        |               |                            |        |
|             |                      |                  |        |                        | 0.35          | 1500                       | Second |

## Stability test of DMS CRMs


- Stability of low µmol/mol DMS standard gas was evaluated by comparing with newly prepared µmol/mol CRM.
- The old CRMs and new CRM gave the same FID response factors with difference of 0.2 %.

#### **Analytical Conditions**

- Column : HP-1, 30 m x 0.53 mm, Carrier gas : 5 mL/min
- Injection : Sample Inlet Temp. 100 ℃, Sample loop 1.0 mL, Sample flow 200 mL/min, Sample valve Temp. : 100 ℃
- GC oven Temp. 120 °C (10 min)
- Detector : FID, Temp. 250 °C



## Stability of low µmol/mol DMS for 6 years



| Cylinder<br>No. | Conc. of<br>preparation<br>(µmol/mol) | Means<br>(± S.D) | RSD<br>(%) | Response<br>factor | Difference<br>(%) | Date of preparation |
|-----------------|---------------------------------------|------------------|------------|--------------------|-------------------|---------------------|
| MD2541          | 12.612                                | 42110            | 0.17       | 3338.884           | 0.04              | 091021              |
| MD2558          | 11.542                                | 38631            | 0.25       | 3346.978           | -0.20             | 050805              |
| MD6097          | 20.453                                | 68211            | 0.07       | 3335.029           | 0.16              | 030220              |
|                 |                                       |                  |            |                    | RSD (%)           | 0.18                |

### **Development and preparation of DMS CRM**

- Preparation of dimethyl sulfide CRM by gravimetry (ISO 6142)
- Preparation reproducibility was checked by preparation four DMS
   CRMs : < 0.36 %</li>
- Six years stability of the CRMs had been checked by comparing newly prepared CRM with old CRMs : < 0.18 %</li>



# Uncertainty evaluation for preparation of low µmol/mol DMS CRM : Modeling Equation

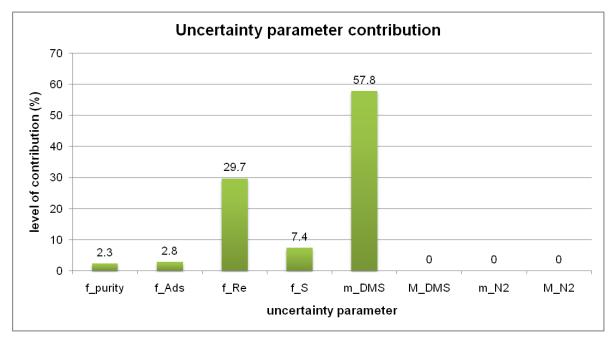
### **Modeling Equation**

$$C_{DMS} = \frac{n_{DMS}}{(n_{DMS} + n_{N2})} \times 10^{6} \times f_{purity} \times f_{Ads} \times f_{Re} \times f_{S}$$

#### Where,

- C<sub>DMS</sub> : Concentration of DMS (µmole/mole)
- n<sub>DMS</sub> : Mole of DMS in CRM (mole),

#### n<sub>DMS</sub>=m<sub>DMS</sub>/M<sub>DMS</sub>


- m<sub>DMS</sub> : Amount of liquid DMS reagent in CRM (g)
- M<sub>DMS</sub> : Molecular weight of DMS (g/mole)
- n<sub>N2</sub> : Mole of N2 in CRM(mole),

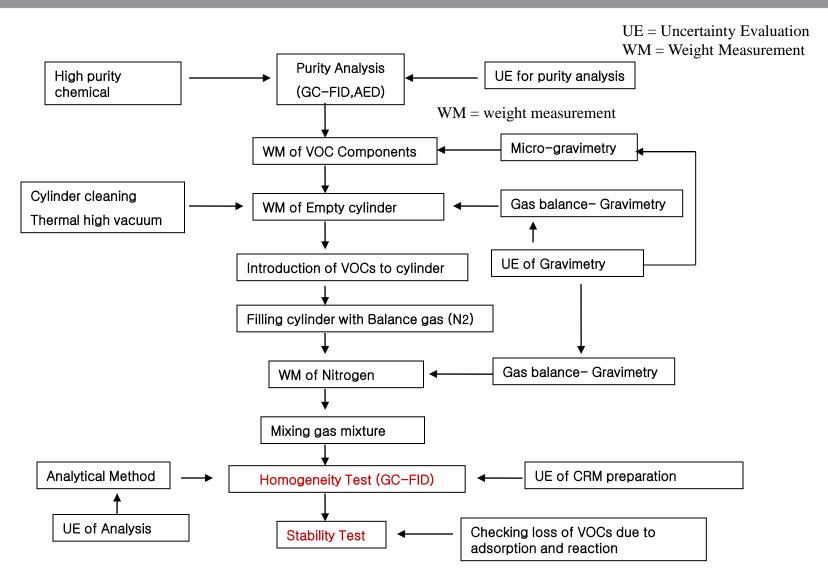
#### $n_{N2} = m_{N2} / M_{N2}$

- m<sub>N2</sub> : Amount of N2 gas in CRM (g)
- M<sub>N2</sub> : Molecular weight of N2 (g/mole)

- f<sub>purity</sub>: Factor for purity of liquid DMS reagent
   f<sub>Ads</sub>:: Factor for adsorption loss of DMS in
   cylinder
- f<sub>Re</sub> : Factor for Preparation reproducibility of DMS CRM
- $\boldsymbol{f}_{S}$  : Factor for stability of DMS in cylinder

# Uncertainty evaluation for preparation of low µmol/mol DMS CRM : Uncertainty parameter contribution




#### Concentration of DMS : 12.612 µmol/mol Relative Expanded uncertainty : 1.3 %

|          | uncertainty parameter                                 | level of contribution (%) |
|----------|-------------------------------------------------------|---------------------------|
| f_purity | Factor for purity of liquid DMS reagent               | 2.3                       |
| f_Ads    | Factor for adsorption loss of DMS in cylinder         | 2.8                       |
| f_Re     | Factor for reproducability for manufacture of DMS CRM | 29.7                      |
| f_S      | Factor for stability of DMS in cylinder               | 7.4                       |
| m_DMS    | Amount of liquid DMS reagent in CRM                   | 57.8                      |

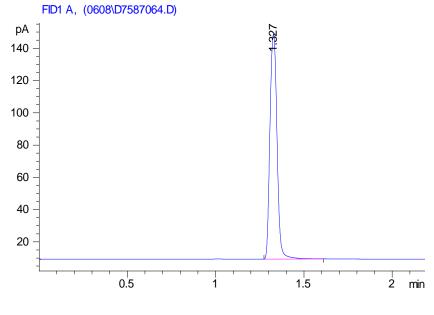
# Establishing KRISS standards for acetonitrile



## **Preparation Scheme of MeCN CRM**



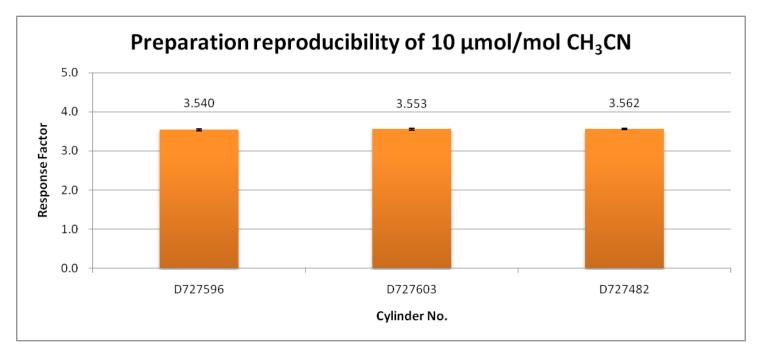
## Preparation reproducibility test of CH<sub>3</sub>CN CRMs


## Preparation reproducibility of CH<sub>3</sub>CN gas standards was checked by GC-FID

#### **Analytical Conditions**

Column : Carrier gas : 6 mL/min,

CP-SIL 5CB, 30 m x 0.53 mm x 5 µm,


- Injection : Split ratio 2 : 1, Sample loop
   1.0 mL, Sample flow : 100 mL/min
- GC oven Temp. : 100 °C (2.2min)
- Detector : FID, Temp. 250 °C
- Sample valve temp. : 100 °C



Analysis Chromatogram of CH<sub>3</sub>CN

## Preparation reproducibility of low 10 µmol/mol CH<sub>3</sub>CN

#### Preparation reproducibility : 0.31 %



| Cylinder<br>No. | Conc. of<br>preparation<br>(µmol/mol) | Means<br>(± S.D) | RSD<br>(%) | Response<br>factor | Difference<br>(%) | Date of preparation |
|-----------------|---------------------------------------|------------------|------------|--------------------|-------------------|---------------------|
| D727596         | 10.052                                | 35.6             | 0.49       | 3.540              | 0.33              | 100614              |
| D727603         | 10.051                                | 35.7             | 0.06       | 3.553              | -0.04             |                     |
| D727482         | 10.049                                | 35.8             | 0.10       | 3.562              | -0.29             |                     |
|                 |                                       |                  |            |                    | RSD(%)            | 0.31                |

# CH<sub>3</sub>CN loss test due to reaction with cylinder : immediate reaction, short term stability

Reaction with the inner surface of cylinder and cylinder valve

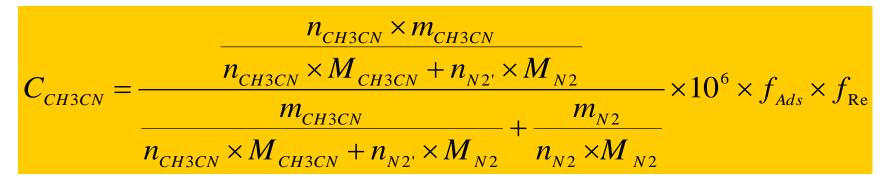
Very important to counting number of molecules getting out from cylinder: how many molecules are getting out without loss from cylinder?

## Adsorption loss test of CH<sub>3</sub>CN during the preparation of CRMs 10 µmol/mol CRM :

- Loss of CH<sub>3</sub>CN due to adsorption to inner surface of cylinder was evaluated by distributing equal amount of 10 µmole/mole CH<sub>3</sub>CN to other empty cylinder..
- The two cylinders were analyzed and compared their FID response factors to check the adsorption loss of CH<sub>3</sub>CN.
- **Result : very small loss**, 0.18 % loss at first distribution.

## Development and preparation of CH<sub>3</sub>CN CRM

- Preparation of acetonitrile CRM by gravimetry (ISO 6142)
- Preparation reproducibility


**100 µmol/mol** was checked by preparation four  $CH_3CN CRMs$  : < 0.21% **10 µmol/mol** was checked by preparation three  $CH_3CN CRMs$  : < 0.31% >> 10 µmol/mol  $CH_3CN CRM$  manufactured by gravimetric dilution with 100 µmol/mol  $CH_3CN CRM$  and  $N_2$  gas.

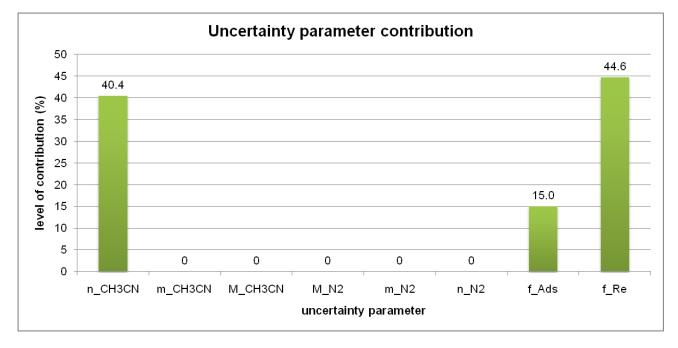
Stability test is in progress.



# Uncertainty evaluation for preparation of 10 µmol/mol CH<sub>3</sub>CN CRM : Modeling Equation

### **Modeling Equation**




#### Where,

- $C_{CH3CN}$  : Concentration of  $CH_3CN$  (µmole/mole)
- $n_{CH3CN}$  : Mole of  $CH_3CN$  in CRM (mole)
- m<sub>CH3CN</sub> : Amount of liquid CH<sub>3</sub>CN reagent in CRM (g)
- M<sub>CH3CN</sub> : Molecular weight of CH<sub>3</sub>CN (g/mole)
- $n_{N2^{^\prime}}\,$  : Mole of  $N_2$  in 100  $\mu mol/mol$  CRM (mole)
- $M_{N2}$ : Molecular weight of  $N_2$  (g/mole)

- $m_{N2}$ : Amount of  $N_2$  gas in CRM (g)
- $n_{N2}$ : Mole of  $N_2$  in CRM (mole)
- $n_{N2}$  Mole of  $N_2$  in CRM (g)
- $f_{Ads}$  :: Factor for adsorption loss of CH<sub>3</sub>CN in cylinder
- $\ensuremath{\mathsf{f}_{\mathsf{Re}}}$  : Factor for Preparation reproducibility of  $\ensuremath{\mathsf{CH}_3\mathsf{CN}}$  CRM

#### Better Standards, Better Life

# Uncertainty evaluation for preparation of 10 µmol/mol CH<sub>3</sub>CN CRM : Uncertainty parameter contribution



#### Concentration of CH<sub>3</sub>CN : 10.051 µmol/mol Relative Expanded uncertainty : 0.93 %

|         | uncertainty parameter                                                | level of contribution (%) |
|---------|----------------------------------------------------------------------|---------------------------|
| n_CH3CN | Mole of CH <sub>3</sub> CN in CRM                                    | 40.4                      |
| f_Ads   | Factor for adsorption loss of CH <sub>3</sub> CN in cylinder         | 15.0                      |
| f_Re    | Factor for reproducability for manufacture of CH <sub>3</sub> CN CRM | 44.6                      |

## **Next Plan:**

Establishing 10 nmol/mol DMS and MeCN standard by dynamic dilution

- 10,000 times dilution system setup by MFC and Molblock, or Sonic nozzle
- Developing transfer standard of cylinder or other container
  - Certify with the dynamic dilution standard

## Better Standards, Better Life