Emission Characteristics of HFC-23 (CHF$_3$)/HCFC-22 (CHClF$_2$) between Different Air Masses in East Asia

Shanlan Li, Jooil Kim, Kyung-Ryul Kim, Jens Mühle

1. School of Earth and Environment Science, Seoul National University, Seoul, South Korea
2. Scripps Institution of Oceanography, University of California, San Diego, USA

Email: sun28@snu.ac.kr

Introduction

- HCFC-22 (chlorodifluoromethane, CHF$_2$Cl) is the most abundant refrigerant, one of the major components in various refrigeration, is emitted mostly from developing countries, as its consumption is not limited until 2013 by the Montreal Protocol.

- HCFC-23 (trifluoromethane, CHF$_3$), a by-product in the manufacture of HCFC-22, is also a powerful greenhouse gas, as it emission restricted at developed countries by Kyoto Protocol and CDM program un KY led developing country to reduction the emission.

- Different emission characteristics will be expected in Northeastern Asian under the different reduction political and incineration process.

Objectives

- To known background concentration of HCFC-22 and HCFC-23 at Gosan of remote site.

- To understand the HCFC-22 and HCFC-23 correlation by the different source regions and to estimate the those emission ratio.

- To estimate those compound emission in China mainland.

Measurements

- Station : Gosan, Jeju Island, Korea shown as star.
- Green dots for HCFC-22 production facilities that participated in the Clean Development Mechanism (CDM) to incinerate HCFC-23 co-produced during HCFC-22 production.
- Blue dots for factories that did not participate in CDM.
- Measured Instrument: Medusa ‘EC-MS’
- Measurement time : 2007,11~
- Data interval: 2hours.

The winds arriving at the site consist of northwesterly and northeasterly continental air for spring, fall, and winter season bringing in signals of pollution from China, Korea, and Japan, except for summer when the monsoon bring oceanic background air from the southern regions.

Results and discussion

HCFC-22 and HCFC-23 Observation

- HCFC-22 and HCFC-23 baseline concentrations measured from November 2007 to December 2008 increased by 1.8 ppt/yr and 0.6 ppt/yr, respectively.

- Pollution events of these compounds were observed, very frequently (e.g., ~2~3 times) at Gosan than baseline levels.

Comparison of HCFC-23/HCFC-22 ratio with Trinidad Head, California, USA

- HFC-23/HCFC-22 ratios which were divided into four groups by comparing their HCFC-23/HCFC-22 ratio and HCFC-22 concentration with those observed at Trinidad Head, California.

- group 1 showing background conditions;
- group 2 and 3 distinguished by different travelling speed of air mass over China;
- group 4 originating from Japan/Korea were less HCFC-23 is released from HCFC-22 production.

HFC-23/HCFC-22 can be used as a good indicator for the assessment of pollution with Chinese origin!

Emission Estimate for HCFC-22 and HFC-23

- Inverse Model

The emission rates of HCFC-22 were derived using Gosan measurements, modeling with a particle dispersion model (FLEXPART) and an inversion algorithm [Kim et al., 2010].

- HCFC-22 ratio based method

If the emission rate of one species (reference tracer) is known, the emission rates of the other compounds can be calculated. HCFC-22, the most abundant HCFC in atmosphere, emission be obtained independently with reasonable certainty by the inverse modeling. HCFC-23 emission was estimated by HCFC-22 based ratio method as follows:

$$E_{HCFC-23} = E_{HCFC-22} \times \left(\frac{\Delta C_{HCFC-23}}{\Delta C_{HCFC-22}} \right)$$

- Global Perspective

The emissions from China were 83 (64 - 109) Gg/yr for HCFC-22, 12 (8.6 - 15) Gg/yr for HFC-23. The HFC-23 values are surprisingly high, accounting for approximately 89% of global emissions. The contribution of HCFC-22 to the global emission is also high, accounting for approximately 23%.

Summary

The baseline concentrations at Gosan of remote sit show 208.3 ppt for HCFC-22, 22.1 ppt for HFC-23 during Nov. 2007 to Dec. 2008.

Our results suggest that the HFC-23/HCFC-22 ratio can be used as a good indicator for the pollution with Chinese origin.

References
