Development of Sulfur Hexafluoride (SF₆) Certified Reference Materials at Ambient Level

Deullae MIN, Jin Bok LEE, Dong Min MOON, Jeongsoon LEE and Jin Seog KIM

Division of Metrology for Quality Life, Korea Research Institute of Standards and Science, Daejeon 305-340, Korea

>> Introduction

Global mean concentration of SF₆ in 2009 was 6.5 pmol/mol which is much lower than other major greenhouse gases. Nevertheless, the global warming potential of SF₆ is much higher than other greenhouse gases due to its long lifetime in atmosphere, which is approximately 3200 years (IPCC, 2007). At present, semiconductor and display TV industries are expanded dramatically in Korea, and these IT industries use SF₆ in etching and cleaning processes. From 2007, the Korea Global Atmosphere Watch Center (KGAWC) has monitored SF₆ at Annyeon island. SF₆ concentration in Annyeon island showed a little higher than global mean value, which is about 7.5 pmol/mol in 2009 (KMA, 2010). In this study, we developed SF₆ certified reference materials at ambient level.

🎾 Preparation of Reference Gas Mixtures

 SF_{θ} gas mixtures were prepared by means of subsitutional gravimetric method. In order to prepare gas mixtures with low concentration SF_{θ} , pure SF_{θ} gas (99.9 %, Matheson Trigas, USA) was 6 times diluted with pure nitrogen gas (99.9999 %, Deokyang Energen Co., Korea), consecutively, in 6.4 L aluminum cylinders which has polish treated on the inner surface (Luxfer, Australia).

Pure SF ₆	
Pure N ₂	$\longrightarrow 0.4 \% \text{ SF}_6/\text{N}_2 \longrightarrow 55 \ \mu \text{ mol/mol SF}_6/\text{N}_2 \longrightarrow 740 \text{ nmol/mol SF}_6/\text{N}_2$
	10 pmol /mol SF ₆ /N ₂ + 200 pmol /mol SF ₆ /N ₂ + 10 nmol /mol SF ₆ /N ₂ +

🎾 SF_e Impurity in Pure Nitrogen

Impurity analysis in pure nitrogen as dilution gas is one of the important factor on preparation of accurate reference materials. Thus, the amount of SF₆ in nitrogen gas largely affects to the concentration of SF₆ standard gas mixture particularly in low concentration. Therefore we measured SF₆ in pure nitrogen using a cryogenic preconcentration system attached to the GC/ECD and confirmed that only less than 0.01 pmol/mol of SF₆ existed in pure nitrogen gases.

Distance the second sec

During gravimetric preparation process, several factors affected to the SF_6 concentration, like balance itself, weighing procedure and purity of source gases, weighing (ISO, 1993). We estimated the uncertainty of reference materials using GUM program (Workbench Version 2.3), that are described the uncertainty budget of one gas mixture. We found that largest uncertainty contributor for the uncertainty of gas mixture was impurities in source nitrogen gases.

Quantity		Estimate / x _i	<i>x,</i> unit	Evaluation type (A or B)	Distribution	Standard uncertainty / <i>u(x</i> j)	Sensitivity coefficient / C _i	Uncertainty contribution / pmol mol ⁻¹
	of SF ₆ gas of N ₂ gas	0.99910 0.9999977	mol/mol mol/mol	B B	Normal Normal	0.000115 0.0000007	6 -6	0.00069 -0.000004
	impurity ource N ₂	10×10 ⁻¹⁵	mol/mol	В	Rectangular	2.5×10 ⁻¹⁵	$1.0 imes 10^{12}$	0.0025
	impurities ource N ₂	0.0000023	mol/mol	В	Rectangular	0.68×10 ⁻¹²	-9300	-0.0063
	eight of y cylinder	-0.011652	g	Α	Normal	0.0000017	-380	-0.00064
Weight of cylinder after charging SF_6		0.0037362	g	Α	Normal	0.0000023	390	0.0009
Weight of cylinder after charging N ₂		0.7048196	g	Α	Normal	0.0000010	-8.3	-0.0000085
Uncertainty from weighing		0.0	g	В	Normal	0.0000024	750	0.0018
SF ₈ co	ncentration	5.9727	pmoi moi-1			0.0071 0.12	pmoi moi-1 %	

🎾 Internal Consistency between Reference Materials

After preparation, reference gas mixtures were compared to each other to ensure the internal consistency. The analytical condition and chromatogram for the gas mixtures are shown in below. We measured 5 times for each gas mixtures and employed A–B–A method to correct the instrumental drift. The calibration curve among 6 gas mixtures appeared as a second order polynomial regressions curve, in which the peak area is depending on the concentration of gas mixtures.

🌮 Conclusion

As a result of this study, we developed a set of ambient level SF₆ reference gas mixtures with standard uncertainty of 0.5 %, which taken from verification and gravimetric preparation uncertainties. KRISS and KGAWC used these SF₆ standard gas mixtures as references for analysis of sample cylinders, which were provided by WMO as Round Robin Test (RRT).

• WMO (2007), GAW Report No. 186. 14th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques.

- KMA (2010), Report of Global Atmosphere Watch 2009.
- ISO (1993), Guide to the Expression of Uncertainty in Measurement. Geneva, Switzerland

