CSIRO Collaborative GHG Observation Programs Southeast Asia-Australia Regional Network

P. B. Krummel, R. J. Francey, P.J. Fraser

Australian Government Bureau of Meteorology

Outline of today's talk

- Importance of tropics on global (and regional) climate
- Southeast Asian Australian tropical regional GHG observation network
- New pilot Australian Tropical Atmospheric Research Station (ATARS)

The CSIRO Global Atmospheric Sampling LABoratory (GASLAB) flask network

Southeast Asia-Australian Regional Network

Carbon cycle vulnerability in the 21st Century

Why are tropics important?

Tropics play a major role in global climate processes (not well defined):

- Home to ~1/2 of global population & rapid economic development (eg. India & China)
- ~80% global biomass burning
 - 20% total global GHG emissions (mainly CO₂)
 - major source of 'anthropogenic' aerosol (global climate feedbacks)
 - ~ 13 40% of global CO₂ from 1997 El Nino Indonesian fires (Page, 2002) (~1Gt Carbon)
- substantial terrestrial CO₂ sink (Stephens et al, 2007)
- ~75% of CH_4 oxidation occurs in tropics (Lawrence et al 2001)
- ~50% of global wetlands
 - Indonesia alone has 4th largest peatland area in world (30-40 MHa) (~10-12% of total) (Page, 2002)
 - 50% of global sources of CH₄ (rice, wetlands, biomass burning)
- ~80% of global sources of N₂O (25% of which from Asian tropics) (Huang *et al*, 2008)
- ~75% of global sources & 60% global sinks H₂ (Xiao et al, 2007)
- Short-lived halocarbons (stratospheric influence)
- Tropics are a critically under-sampled region
 - Only 1 global tropical GAW station matches GLOBALVIEW CO2 criteria (Samoa)
 - Asian tropics unique (land-sea interactions important in SE Asia)

Some key research questions in tropics

Do Asian aerosols (tropical biomass burning) influence regional climate?

• Increase rainfall in NW Australia

Why has global CH₄ increased since 2007 (after a decade of stability)?

- Boreal (likely to be very gradual) and tropics
- Biomass burning changes unlikely as little activity since 2002
- Increased CH₄ wetland emissions
- Dominant variability in tropics is ENSO (biomass burning)
- OH variability possible?
- Reduce uncertainties in sources/sinks of many climatically active constituents
 - CO₂, CH₄, N₂O, H₂, halocarbons...
 - Large potential feedbacks in tropical forests under stress (droughts)
 - Large droughts in Amazon (2005) caused 1.4Pg/C/yr switch from sink to source (Lewis, 2009)

Gunn Point (NT) - existing radar station (BoM) (Lat/Long: 12.2 S, 131.0 E)

Gunn Point Pilot Tropical Atmospheric Research Station

- Latitude : 12.2°S
- Longitude : 131.0°E
- Elevation: 25 m
- Road Access
 - 1-2 hours from Darwin (70 km road)
 - 4WD
 - · 35 km unsealed road subject to wet season flooding
- Site History
 - Ex-prison farm (closed 1990)
 - Radar Site Bureau of Meteorology lease since 2004
 - Atmospheric Radiation Measurement Site (ARM funded US Department of Energy)
- Power
 - Town power (generally reliable but does fail in storms)
 - Backup generator for essential applications (~3 days)
- Communications
 - · Land line and mobile next G reception

Bureau of Meteorology

Air mass origin maps Gunn Point (courtesy Alistair Manning UK Met Office)

Australian Government Bureau of Meteorology

Gunn Point (NT) – New tropical Australian monitoring site

- Wet / Dry season air masses giving continental coverage with Cape Grim station, clean Indian Ocean air & SE Asian air masses
- Strategically located to reduce global scale atm. inversion CO₂ flux uncertainties
- Based at existing research radar site at Gunn Point (BoM)
- Unique opportunity to combine existing state-of-the-art physical atmospheric research facilities currently in Darwin (BoM / US DoE Atmospheric Radiation Measurement program) with high precision chemical atmospheric measurements
 - Regular field campaigns (Mctex, TRMM, Dawex, TWPICE...)
- TCCON network site at Darwin (FTS) for satellite validation (GOSAT, SCHIAMACHY) since September 2005 (University of Wollongong/Caltech)
- Extensive tropical ecosystem (Savanah) research (CSIRO, Charles Darwin University)

Southern Ocean Carbon Sink

CSIRO. 3.1 Southern Ocean Carbon Sink

Gunn Point – atmospheric measurement program

- Current (Sep 2011)
 - In-situ CO₂ & CH₄ (CRDS)
 - In-situ ¹³CO₂/¹²CO₂ (CRDS)
 - Flask CO₂, CH₄, 13 CO₂/ 12 CO₂, N₂O, CO, H₂
 - Met (WS, WD)
 - Radon (ANSTO)
 - O_{3,} CO, NO/NO_X
- Proposed measurement program
 - PM_{2.5}/PM₁₀
 - Aerosols (dry season campaign completed June 2010)
 - Short-lived halocarbons, C₄-C₁₂ HCs: GC-ECD (N. Harris, U. Cambridge, UK) (Oct 2011 or May 2012)
 - Medusa (2012/13?)

Measurement details- VOC and Aerosol Campaign, June 2010 (early dry season)

• VOC

- 12 hour samples (daytime nighttime 7am-7pm)
 - DNPH cartridges aldehydes and ketones- HPLC analysis
 - Adsorbent tubes– VOCs GC-FID/MS
- Aerosol
 - Size distributed number (14 700 nm) SMPS
 - CCN
 - MOUDI / Microvols (chemistry)
- Greenhouse Gases
 - CO₂, CH₄ (Picarro)

Preliminary data events (dry season)

Two distinct biomass burning events

VOC	Conc (ppt)	Increase
Formaldehyde	1320	1.9
acetaldehyde	1940	3.8
glyoxal	190	3.8
Me glyoxal	210	2
MEK	240	2.6
Toluene	300	1.5
Cyclopentane	41	1.3
styrene	22	1.1
xylenes	47	1.3

	VOC	Conc (ppt)	Increase
	Formaldehyde	-	-
	acetaldehyde	-	-
	glyoxal	-	-
	Me glyoxal	-	-
	MEK	-	-
	Toluene	4800	27
	Cyclopentane	675	21
*	styrene	300	15
	xylenes	861	24
Australian Governm	Toluene Cyclopentane styrene xylenes	4800 675 300 861	27 21 15 24

Bureau of Meteorology

c SIRO

•How does biomass burning affect SOA formation in Northern Australia?

-Is the total radiative forcing from BB positive or negative?

Danum Valley (Malaysia) GAW observatory

- Bukit Atur Global Atmospheric Watch (GAW) (04°58'53"N, 117°50'37"E, elevation 426m) in Danum Valley Conservation Area
- located on a ridge above the forest canopy (~70m).
- Danum Valley Conservation Area is 438 sq km Class 1 Protection Forest Reserve.
- ~ 90% is lowland dipterocarp forest (remainder is submontane forest).
- conservation area is surrounded by a 9500 sq km sustainably-managed natural Forest Management Area.
- CSIRO installed LoFlo CO₂ analyser system September 2004
- dual air intakes at 3 levels (100m, 60m and 30m)
 - (Future option for virtual tall tower capability & local CO₂ flux measurements)

5°N, 118°E

Danum Valley existing research program

Atmospheric species	Analytical method	Intake position	Research group
Meteorological parameters	AWS (temp, RH, WS, WD, Rad)	Roof (10m)	MMD (Sep 2005)
In-situ CO ₂	LoFlo (NDIR)	Tower 100m (60, 30m)	CSIRO (Aug 2004)
Particles (PM ₁₀)	TEOM 1400a /MAAP	Roof	IFT Leipzig (Apr 2006)
Short-lived halocarbons, C4-C12 HCs	GC-ECD	15m	University of Cambridge (2008)
Aerosols (AOD) multi wavelength optical depth	AOD Precision Filter Radiometer (Sun photometer)	Roof	PMOD-WRC (Aug 2007)
Aerosols (PM10)	Nephelometer	Roof	IFT Leipzig (Apr 2006)
Surface O ₃	UV absorption (TEI 49i & 49c)	Roof	MMD (2008)
Precipitation	Rain Gauge	Roof (platform)	MMD (Sep 2005)
Multi-species OP3 campaign (Apr/June 08)	Multi	Tower (10m)	UK consortium
pH and chemical composition	wet sampler	Roof (platform)	EANET (Sep 2005)

Bureau of Meteorology

Cabo de Rama (CSIRO/NIO)

Indian GHG observation network (courtesy M. Ramonet, LSCE, France)

Long term observatories for background measurements (courtesy of M. Ramonet, LSCE)

Mauna Loa

