hissions of Halogenated Compounds East Asia: Importance for Balancing Global Budgets

2011. 9. 29

Gosan Station (Jeju Island, k

Kyung Ryul Kim School of Earth and Environmental Sciences

CC 4^m Report: Global Warming is Real !

eenhouse Gases and Climate Change

portance of Halogenated Compounds

ontreal protocol controlled compounds)

1. Gases **Phased out before 2000** under the Montreal Protocol and its Amendments:

CFC-11, CFC-12, CFC-13, CFC-113, CFC-114, CFC-115, carbon tetrachlorid

methyl chloroform, halon-1211, halon-1301, halon-2402

2. Chlorinated Hydrocarbons **Controlled** by the Montreal Protocol and its Amendments:

HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b

- Anthropogenic Greenhouse Gases Not Regulated (Proposed or in Use): HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-152a
- 4. Perfluorinated Compounds:

sulphur hexafluoride(SF₆), perfluoromethane, perfluoroethane, perfluoropropa

lobal Warming Threat of Halocarbons

pound egory	Compound Name	Lifetime(y ears)	Global Warming Potential (100yr CO ₂ -eq				
	Hydroflurorcarbons (HF	Cs)					
	HFC-134a	14	1,430				
	HFC-152a	1.4	124				
	HFC-23	270	14,800				
-Cs	HFC-32	4.9	675				
	HFC-125	29	3,500				
	HFC-143a	52	4,470				
	Perfluroinated Compour	nds (PFCs)					
	PFC-14 (CF ₄)	50,000	7,390				
s, SF6	PFC-116 (C ₂ F ₆)	10,000	12,200				
	PFC-218 (C ₃ F ₈)	2,600	8,830				

 Many AHCs are powerful greenhou gases (GHGs) regulated under th **Kyoto Protocol** Some species add almost a permane radiative burden o the atmosphere Previously emitted from developed countries, now increasing in

ontreal Protocol for Protecting the Ozone

- Montreal Protocol has been successful in stabilizing the concentrations of ozor depleting AHCs in the atmosphere
 - Developed countrie complete phase-out
 - Developing countrie continued use of interim replacement (HCFCs)

nissions of Halocarbons in East Asia

Article 5" (developing) country status under the MP (CN, KR):

- slower phase-out of CFCs, CH₃CCl₃
- dominant consumer/emitter of interim HCFCs (Montzka et al., 2009, GR

missions from industrial production:

- HFC-23: during HCFC-22 production (CN)
- PFCs: during primary aluminum production (CN) and semiconductor manufacture (KR, JP, TWN)

espite importance of emissions in East Asia, actual knowledge of emissio

ey Study Focus

nderstanding the emissions of halogenated compound in East Asi

- Based on accurate, high-frequency measurements encompassing all of East Asia
- Development of various methods for quantifying regional emissions
- Analyzing emission patterns, characteristics
- Identifying East Asia's role in the global budgets of halogenated compounds

AGE Network: (<u>A</u>dvanced <u>G</u>lobal <u>A</u>tmospheric <u>G</u>ases eriment) ALE (1978) - GAGE - AGAGE

eric

AGAGE

"AGAGE is distinguished by its capability to measure over the globe at high frequency

almost all of the important species in the

Montreal Protocol to protect the ozone layer an

<u>almost all of the significant non-CO₂ gases in</u> <u>the Kyoto Protocol</u> to mitigate climate change." (AGAGE brochure)

alogenated Species Measurements

- Medusa GC-MS ('07~)
 - Developed by R. F. Weiss (SIO, UC San Diego)
 - Fully automated using custo HW/SW
 - 2L sampling, 2hr inverval
 - Cryofocusing module, combined with GC-MSD
 - Operated under the AGAGE
 Network

logenated Species Measurements

	~NH (2005)	Typical		~NH (2005)	Typical
Compound	(ppt)	% precision	Compound	(ppt)	% precision
CF4	74	0.15	H1301	3.1	1.5
HFC23	25	0.7	H1211	4.5	0.5
C2F6	3.5	0.9	H2402	>0.5	2
C3F8	0.5	3			
HFC32	~1	5	CH3CI	570	0.2
			CH3Br	10	0.5
SF6	5.3	0.4	CH3I	1	2
SO2F2	1	1.6	CH2Cl2	36	0.8
HFC134a	29	0.4	CHCI3	11	0.6
HFC152a	4.2	1.2	CHBr3	~3	0.6
HFC125	2.9	1	CCI4	95	1
HFC143a	6.5	1.2	CH3CCI3	28	1
HFC365mfc	<1	10			
			CHCICCI2	0.8	2.5
HCFC22	170	0.3	CCI2CCI2	5.5	0.5
HCFC141b	19	0.4			
HCFC142b	15	0.6	C2H2	10-200	0.5
HCFC124	1.6	2	C2H4	50-500	2
			C2H6	500	0.3
CFC11	257	0.15	C6H6	10-100	0.3
CFC12	546	0.05	C7H8	<1-10	0.6
CFC13	-	2			
CFC113	80	0.2			

SAGE network

osan Station (Jeju Island, Korea)

easonal Wind Patterns

ternational Research At Gosan

cripps CO₂ Network (Ralph Keeling)

D₂ Measurements

- Flask Sampling ('90~)
 - Sampling 1~2 times per weel
 - ¹²C/¹³C/¹⁴C isotope analysis
 - Scripps CO₂ Network
- LOFLO CO₂ Analyzer ('07 Nov.-
 - 1min ~ 1hr average meas.
 - NOAA/WMO -2007x Cal. Sca

D₂, flask and continuous measurements

-4, SF₆ Chromatograms on the Medusa GC-N

alogenated Species - CFC-11

alogenated Species - CFC-12

alogenated Species - CH₃CCl₃

alogenated Species - HCFC-22

alogenated Species - HFC-23

alogenated Species - HFCs

Vollmer et al., Figure 3

alogenated Species - SF₆

alogenated Species - Pollution Events

trajectories coming from northern Asia

Air masses classification Scheme at Gosan

Based on residence time analysis of trajectories arriving at Gosan >Air mass signatures with different source Region including China, Taiwan, Korea and Japan. Consider residence tim of back-trajectories wi altitudes below 2000n If trajectory passed through two regions, the air mass was classified as blended air.

The most air masses were classified as China+Korea blended air. Residence time analysis of back-trajectories is insufficient for fully separating influence of China and Korea.

	CFC-11	CFC-12	CFC-113	CFC-114	HCFC-22	HCFC-141	HCFC-142	HFC-23	HFC-134a	HFC-152a	HFC-32	HFC-125	HFC-143a	HFC-365mf	H-1211	H-1301	CF4	PFC-116	PFC-218	SFG	CH3CI	CH2CI2	CHCI3	CH3CCI3	CCI4	CH3Br
CFC-11	1.00	0.61	0.06	0.34	0.84	C.6C	0.79	0.71	0.69	3.57	0.54	C.51	0.30	0.16	C.59	0.25	0.70	0.55	0.32	0.56	0.75	0.77	0.88	0.27	0.72	0.67
CFC-12	0.61	1.00	0.10).44	0.56	C.56	0.61	0.50	C.34	0.41	0.55	C.27	0.64	0.39	C.68	0.08	0.43	0.47	0.31	0.27	0.65	0.65	0.62	0.43	83.0	0.58
CFC-113	0.06	0.10	1.00	0.23	0.11	0.23	0.20	0.14	0.11	D.19	0.16	0.13	0.05	-0.01	0.19	0.01	0.03	0.16	0.14	80.0	0.17	0.17	0.14	0.08	0.17	0.10
CFC-114	0.34	0.44	0.23	1.00	0.52	0.71	0.67	0.55	C.38	D.62	0.36	C.45	D.10	-0.01	C.57	0.04	0.10	0.46	0.37	0.28	0.61	0.56	0.47	0.18	0.56	0.41
HCFC-22	0.84	0.56	0.11).52	1.00	C.81	D.91	0.35	C.84	0.76	0.71	C.73	D.49	0.11	C.7*	0.23	0.65	0.73	0.46	0.66	0.87	0.88	0.92	0.18	0.79	0.70
HCFC-141b	0.60	0.56	0.23	0.71	0.81	1.00	0.85	0.37	C.6C	0.73	0.35	C.61	0.32	0.08	C.78	0.20	0.40	0.71	0.65	0.51	0.72	0.61	0.71	0.31	0.73	0.60
HCFC-142b	0.79	0.51	0.20	0.67	0.91	C.85	1.00	0.34	C.71	95.C	0.54	C.69	0.39	0.05	C.75	0.26	0.54	0.70	0.50	0.52	0.80	0.61	0.84	0.28	0.75	0.64
HFC-23	0.71	0.50	0.14	0.55	0.85	C.67	0.84	1.00	C.69	03.C	0.34	50.0	0.35	0.04	C.G0	0.18	0.61	0.59	0.42	0.47	0.79	0.75	0.80	0.22	0.70	0.61
HFC-134a	063	0.34	0.11	0.38	0.84	C 6C	0.71	0.39	1.00	3 70	0.57	C.77	0.70	013	C.58	0.29	0.61	0.68	0.42	0,71	0.71	0 73	0.79	0.16	0.62	061
HFC-152a	0.57	0.41	0.19	0.62	0.76	0.73	0.88	0.30	C 7C	1.00	0.58	C.72	0.45	0.04	C.66	0.18	0.49	0 59	0.44	0.46	0 68	0 69	0.75	0.30	0.63	0 50
HFC-32	0 54	0 55	0.16	3.68	0.71	C 65	3.64	0.34	C 57	D 58	1.00	C.59	0.37	0 05	C.68	0.20	0 39	0.65	0.49	0.54	0.79	0 73	0.66	0.17	0.78	0 55
HFC-125	0.51	0.27	0.13	0.45	0.73	0.61	0.69	0.38	C.77	0.72	0.59	1.00	0.60	0.00	C.58	0.25	0.48	0.61	0.47	0.61	0.67	0 67	0.71	0.13	0.57	0 54
HFC-143a	0.30	0.04	0.05	0.19	0.49	C.32	0.39	0.35	0.70	0.45	0.37	C.60	1.00	0.18	C.36	0,17	0.36	0.50	0.25	0.54	0.43	0.44	0.43	-0.08	0.34	0.38
HFC-365mfc	0.15	0.09	-0.01	-0.01	0.11	80.0	0.05	0.04	0.13	0.04	0.05	0.06	0.18	1.00	0.09	0.09	0.27	0.12	0.01	0.18	0.06	0.10	0.10	0.26	0.08	0.13
H-12 11	0.53	0.68	0.19	0.57	0.71	C.78	3.75	0.50	C.58	0.68	0.58	C.56	0.36	0.09	1.00	0.19	0.49	0.77	0.54	0.55	0.79	0.65	0.74	0.33	0.82	0.69
H-1301	0.35	0.08	0.01	0.04	0.33	G.20	0.26	0.18	C.29	D. 18	0.20	0.25	0.17	0.09	Ć. 19	1.00	0.22	0.24	0.21	0.28	0.27	0.24	0.30	0.11	0.23	0.24
CF4	0.70	0.43	0.03	0,19	0.65	C.40	0.54	0.51	C.61	0.49	0.39	C.48	0.36	0.27	C.49	0.22	1.00	0.57	0.29	0.59	0.61	0.60	0.72	0.24	0.55	0.48
PFC-116	0.55	0.47	0.16	0.46	0.73	G.71	3.70	0.59	C.68	2.59	0.55	C.61	0.50	0.12	C.77	0.24	0.57	1.00	0.68	0.7Z	0.78	0.82	0.72	0.26	0.79	0.66
PFC-218	0.59	0.31	0.14	n 37	0.46	0.55	ารก	N 42	0.42	0.44	0.49	r 47	0.25	0.01	r 54	0.21	0.29	0.68	1.00	0.59	0.49	0.55	n 44	0.21	0.56	0.44
SF6	0.55	0.27	0.08	0.28	0.66	C.51	0.52	0.47	C.7 I	0.46	0.54	C.61	0.54	0.18	C.55	0.28	0.59	0.72	0.59	1.00	0.60	0.67	0.60	0.31	0.57	0.55
СНЗСІ	0 75	0.65	0.17	1 61	0.87	0.72	าลก	N 79	۲ 71	7 68	0.79	Г 67	n 43	0.76	r 79	0.27	0.61	0.78	0.49	0.60	1.00	0.90	0.89	0.18	0.87	073
CH2CI2	0.77	0.65	0.17	J.56	0.88	0.81	J.81	0.75	c.7\$	0.69	0.73	L.67	0.44	0.10	L.85	0.24	0.60	0.82	0.65	0.67	0.90	1.00	0.89	0.29	0.86	0.77
CHCI3	0.88	0.62	0.14	3 47	0.92	C 71	3.84	0 36	C 79	0 75	0.56	C 71	0.43	0.10	C 74	0.30	0.72	0 72	0.44	0.60	0.89	0.69	1.00	0.28	0.84	075
CH3CCI3	0.27	0.43	0.08	J.18	0.18	0.31	0.28	0.22	C 16	0.30	0.17	U.13	-0 C8	0.26	0.33	U.11	0.24	0.26	0.21	0.31	0.18	0.29	0.28	1.00	0.29	0.42

atio-based Method Details

$$I_x = E_r \times \Delta C_x / \Delta C_r \times M_x / M_r$$

- x: Emission of target compound.
- r: Emission of tracer compound.

 $C_x/\Delta C_r$: Relative enhancement ratio of target to

tracer compound.

EXPART Lagrangian particle dispersion

odel

ootprint emission sensitivity in global domain for gosan_200801

rt time of sampling 20080114. 90000 End time of sampling 20080114.120000 Lower release height 82 m Upper release height 62 m Passive tracer used, meteorological data are from ECMWF

eleasing and following millions of

- Open source model developed by A. Sto (NILU, Norway)
- Meteorological data: ECMWF/GFS, 1°x1° 3~6hr
- 10d back-trajectories
- <u>http://transport.nilu.ne</u>
 <u>expart</u>

EXPART Inversion Method

- Make first-guess of emissions (*a priori*), normally based on population density
- Statistical analysis of the *a priori* compared to measurements, deriving optimized emissions (*a posteriori*)
- Analytical method influenced by uncertainties in *a priori*
- Able to incorporate

rect Inversions of HCFCs and HFCs

Atmos. Chem. Phys., 10, 3545–3560, 2010 www.atmos-chem-phys.net/10/3545/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling

A. Stohl¹, J. Kim², S. Li², S. O'Doherty³, J. Mühle⁴, P. K. Salameh⁴, T. Saito⁵, M. K. Vollmer⁶, D. Wan⁷, R. F. Weiss⁴, B. Yao⁸, Y. Yokouchi⁵, and L. X. Zhou⁸

¹Norwegian Institute for Air Research, Kjeller, Norway

²School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

³School of Chemistry, University of Bristol, Bristol, UK

⁴Scripps Institution of Oceanography, University of California, San Diego, California, USA

⁵National Institute for Environmental Studies, Tsukuba, Japan

⁶Swiss Federal Laboratories for Materials Testing and Research (Empa), Duebendorf, Switzerland

⁷State Key Joint Laboratory for Environmental Simulation and Pollution Control, Peking University, Beijing, China ⁸Centre for Atmosphere Watch and Services, Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China

Received: 18 November 2009 - Published in Atmos. Chem. Phys. Discuss.: 1 February 2010

verage sensitivity calculated from FLEXPAR

 Basis for inversion, overview of how air mass arrives at the receptor site

odel verification: HCFC-22 concentration

gure 2, Kim et al. (2010), GRL

nissions in China: Ratio-based Method

GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L12801, doi:10.1029/2010GL043263, 2010

Regional atmospheric emissions determined from measurements at Jeju Island, Korea: Halogenated compounds from China

Jooil Kim,¹ Shanlan Li,¹ Kyung-Ryul Kim,^{1,2} Andreas Stohl,³ Jens Mühle,⁴ Seung-Kyu Kim,¹ Mi-Kyung Park,^{1,2} Dong-Jin Kang,⁵ Gangwoong Lee,⁶ Christina M. Harth,⁴ Peter K. Salameh,⁴ and Ray F. Weiss⁴

- Received 16 March 2010; revised 19 April 2010; accepted 23 April 2010; published 16 June 2010. Ratio-based technique with HCFC-22 as tracer
- Significant emissions of halogenated compounds in China, even for compounds nreviously expected to be small

et al. (2011), ES&T - China and Taiwan

et al. (2011), ES&T - Korea and Japan

et al. (2011), ES&T

et al. (2011), ES&T - Emissions in East Asia

							Unit: kt/a
	China	Taiwan	Ко	rea.	Japan	Total	to Giobal (%
CFC-11	8.9 ±0.8	0.27 ±0.06	0.9	±0.2	0.7 ± 0.05	10.8	13.1
CFC-12	4.9 ±0.5	0.18 ±0.04	0.8	±0.2	0.6 ±0.04	6.5	8.2
CFC-114	1.2 ±0.4					1.2	
HCFC-22	68.1 ±6.6	2.2 ±0.5	7.9	±1.5	7.5 (7-8)	85.7	23.3
HCFC-141b	12.8 ±1.2	0.5 ±0.11	2.1	±0.4	1 ±0.07	16.4	27.3
HCFC-142b	8.5 ±0.8	0.12 ±0.03	0.8	±0.1	0.6 ±0.04	10.0	24.4
HFC-23	8.8 ±0.8	0.07 ±0.02	0.13	±0.02	0.2 ±0.01	9.2	65.2
HFC-134a	7.1 ±0.7	0.52 ±0.12	1.6	±0.3	3.1 ±0.2	12.3	7.5
HFC-152a	4.7 ±0.4	0.08 ±0.02	0.10	±0.02	0.6 ±0.04	5.5	19.2
HFC-32	3.7 ±0.4	0.05 ±0.01	0.20	±0.04	0.3 ±0.02	4.3	118.1
HFC-125	2.7 ±0.3	0.07 ±0.02	0.26	±0.05	0.5 ±0.03	3.5	11.8
HFC-143a	0.5 ±0.05	0.04 ±0.01	0.07	±0.01	0.2 ±0.01	0.8	2.6
HFC-365mfc		0.01 ±0.003				0.01	0.3
H-1211	1.1 ±0.1		0.1	±0.02		1.2	3.8
CF4	1.3 ±0.1		0.21	±0.04	0.1 ±0.01	1.6	5.1
C ₂ F ₆	0.4 ±0.04		0.1	±0.02	0.1 ±0.01	0.6	1.9
C ₃ F8	0.07 ±0.01					0.1	0.2
SF ₆	0.9 ±0.1		0.5	±0.1		1.4	18.9
снзсі	201 ±19					201.0	
сн_сı2	131 ±12		16.8	±3.2	9.2 ±0.6	157.0	
снсіз	35.5 ±3.3				1.8 ±0.1	37.3	
сн _з ссіз	1.4 ±0.3	0.13 ±0.03	1.4	±0.3	0.4 ±0.02	3.3	
СНзвг	3.4 ±0.3					3.4	
Per group							
CFCs	15	0.45	1.7		1.3	18.5	10.7
HCFCs	89.4	2 82	10.8		9.1	112.1	24.0

nission Patterns of Halocarbons in East Asia

ART	ICL	E

pubs.acs.org/est

Emissions of Halogenated Compounds in East Asia Determined from Measurements at Jeju Island, Korea

Shanlan Li, Jooil Kim, and Kyung-Ryul Kim*

School of Earth and Environmental Sciences, and South Korea Research Institute of Oceanography, Seoul National University, Seoul, South Korea

Jens Mühle

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States

Seung-Kyu Kim

School of Earth and Environmental Sciences (BK-21), Seoul National University, Seoul, South Korea

Mi-Kyung Park

School of Earth and Environmental Sciences, and South Korea Research Institute of Oceanography, Seoul National University, Seoul, South Korea

Andreas Stohl

Norwegian Institute for Air Research, Kjeller, Norway

Dong-Jin Kang

Korea Ocean Research and Development Institute, Seoul, South Korea

The A 11 Chief M H at Date V Cal 1 D T MAL

et al. (2011), ES&T - Relative emissions by untry

Fractions of each compound to total halocarbons (CFCs, HCFCs, and HFCs) emissions for 2008 in each country.

ncertainties in the FLEXPART inversions

ncertainties in the *a priori* emissions accounted for by:

- Varying the *a priori* emissions by $\pm 50\%$
- Using different *a priori* distributions
- ncertainties in input Met. Data
- Comparison studies between ECMWF and GFS: on-going

ncertainties can be reduced by incorporating multiple measurement sites version

ohl et al. (2010), ACP

HCFC-22

HFC-23

Immary and Conclusions

igh-frequency, *in situ* measurements of key GHGs for monitoring missions in East Asia at Gosan

Halogenated compounds (CFCs, HCFCs, HFCs, PFCs, SF₆, etc), in collaboration with the AGAGE Network

Bosan measurements are very useful for monitoring GHG emissions le East Asia region

- Clear background trajectories + pollution trajectories from China, Korea, Japan and Taiwan during non-summer months
- Emissions estimated using both ratio-based and inversion modeling techniques
- East Asian emissions are significant to global budgets in halogenated compounds

o-authors and Colleagues

yung-Ryul Kim, Shanlan Li, Mi-Kyung Park, Seung-Kyu Kim (Seoul Natior niversity), Dong-Jin Kang (Korea Ocean Research Development Institute) angwoong Lee (Hankuk University of Foreign Studies), Meehye Lee (Kore niversity), Kyung-Sik Kang (Jeju University)

ay F. Weiss, Jens Muhle, Christina Harth, Peter Salameh (AGAGE, Scrip stitution of Oceanography, UC San Diego)

alph Keeling, Alane Bollenbacher (Scripps CO₂ Program, Scripps Institutio ⁻ Oceanography, UC San Diego)

ndreas Stohl (Norwegian Institute for Air Research)

Thank You.