High precision FTIR measurements of atmospheric trace gases

- 1. Multi-species in situ FTIR analyser
- 2. Total Carbon Column Observing Network (TCCON)

David Griffith University of Wollongong Australia

FTIR and cell

Mid-infrared spectrum of clean air

IR spectrum of clean air ~ 2200 cm⁻¹

Spectrum analysis: least squares fitting MALT model, Hitran database

Allan deviation - summary

Species	FTIR		GAW recomm.
	<u>1 min</u>	10min	
$CO_2 \ \mu mol \ mol^{-1}$	0.02	0.01	0.1 (0.05 in SH)
CH4 nmol mol ⁻¹	0.2	0.1	2
CO nmol mol ⁻¹	0.3	0.1	2
N ₂ O nmol mol ⁻¹	0.09	0.04	0.1
δ^{13} C in CO ₂ ‰	0.03	0.02	0.01
δD in H ₂ O ‰	1.2	0.5	-
δ^{18} O in H ₂ O %	0.5	0.2	-

Calibration FTIR vs reference gases (MPI-Jena)

Calibration: stability

100 daily target tank raw measurements

ICOS reference tank measurements thanks to Sam Hammer, U. Heidelberg

FTIR vs LoFlo / AGAGE @ Cape Grim _____FTIR _____Loflo/AGAGE

FTIR-Picarro comparison: CH₄ GASLAB March 2010

FTIR vs laser

 \odot

 $\overline{\bigcirc}$

 \bigcirc

FTIR

- Broadband spectrum
 - Multiple components
 - Save spectra reanalysable
- Thermal source globar
 - Low brightness
 - => best time resoln. ~ 1 sec
- Mid IR, atmospheric pressure
 - Strong absorption
- Wide spectrum band fit
 - more spectral information
 - Good stability

<u>Laser</u>

- Narrowband, single lines
 - 1-3 species (per laser)
- Laser source
 - High brightness
 - => high SNR, fast meas.
- Near IR, low pressure
 - Weak absorption
 - MIR lasers becoming available

 \odot

 $(\overrightarrow{})$

 (\mathbf{R})

- Narrow band fit
 - less spectral information
 - Drift, more freq. calib.

Net result: similar precision

Applications

- Continuous multispecies trace gas measurement
 - Clean, urban, agricultural air
 - Limestone caves
 - Mobile platforms (e.g. train)
- Flux measurements (esp. agriculture)
 - Tower profiles
 - Micromet. methods
 - Automated soil flux chambers
- Open path FTIR spectrometer
 - Tracer methods (multicomponent measurements)

Long term clean air measurements Lauder NZ

Trace gas correlations Utilising the multi-component advantage

 δ^{13} C.CO₂ vs CO₂

 N_2O vs CO_2

Mobile measurements: Transects of the Australian continent

Enhanced methane concentrations in the tropical wet season

Steve Livesley, Stefan Arndt, Benedikt Fest, Nina Hinko-Najera, Uni Melbourne

Keeling plot, all chambers, 12 hours

Summary: FTIR analyser

- Continuous, simultaneous, multispecies analyser
- CO_{2} , CH_{4} , CO, $N_{2}O$, $\delta^{13}C$
- High precision and accuracy
- Low maintenance
- Now available from Ecotech, Australia
 - <u>www.ecotech.com</u>
 - <u>www.knj-eng.co.kr</u> in Korea

... now to TCCON...

TCCON: Total Carbon Column Observing Network

- Remote sensing of total column CO_2 , CH_4 , N_2O , CO ...
 - Direct-sun solar absorption spectroscopy in the near IR
- Derive column average dry air mole fractions (e.g. X_{CO2})
 - Using column O₂ as internal standard
- Calibrated against NOAA/WMO in situ reference scales
- Currently ~15 sites

Why TCCON?

- Total columns measurements :
 - Are less susceptible to local sources and sinks than in situ
 - Are less sensitive to vertical transport errors in models
 - Do not alias diurnal and seasonal boundary layer transport into the measured column amount
 - Can be used for satellite validation
 - GOSAT
 - 0CO-2
 - CarbonSat

Near IR solar absorption spectrum overview

Analysis by spectrum fitting e.g. 6230 cm⁻¹ CO₂ band

Raw daily column measurements Wollongong, clear sky day

The TCCON SH data set

TCCON data - Tsukuba

TCCON precision, accuracy and calibration CO_2

- *Precision* (1- σ repeatability) achieved: <0.2 ppm
- "Absolute" calibration by comparison of TCCON total columns with integrated aircraft in situ profiles using WMOcalibrated instruments
 - eg. HIPPO, TWP-ICE, IMECC
 - Extrapolated to top and bottom of the atmosphere
- Accuracy achieved: ~ 0.4 ppm (1- σ) across the network
 - This accuracy (0.1%) is unprecedented in remote sensing
 - Measurements and analysis standardised to avoid bias
 - Ongoing work to improve:
 - Instrumentation, software, spectroscopy

TCCON calibration against aircraft profiles CO_2 and CH_4

 Further detail:
Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data, Atmos. Meas. Techn., 3, 1351-1362.

TCCON calibration against aircraft profiles CO and N_2O

CO (1σ 2%)

Further detail: Wunch, D., et al. (2010), Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data, *Atmos. Meas. Techn., 3, 1351-1362.*

GOSAT

Greenhouse gas Observing SATellite

- FTIR spectrometer, backscattered solar NIR
- CO₂, CH₄ analysis
- Launched Jan 2009 by JAXA, Japan
- 3 day repeat orbit
- Validation by TCCON overpasses

$\begin{array}{c} \text{GOSAT-TCCON SH validation} \\ \text{CO}_2 \end{array}$

- TCCON : 1-2 hour average around GOSAT overpasses
- GOSAT: 2 x 2° region around TCCON sites

Also GOSAT retrievals from ACOS, SRON

- lower bias
- AOD and scattering corrections

GOSAT-TCCON SH validation CH_4

- TCCON : 1-2 hour average around GOSAT overpasses
- GOSAT: 2 x 2° region around TCCON sites

FIR Analyser

UoW: Nick Deutscher, Chris Caldow, Graham Kettlewell, Martin Riggenbach CSIRO: Paul Fraser, Paul Krummel, Marcel Vanderschoot, Zoe Loh U. Heidelberg: Sam Hammer, Ingeborg Levin TCCON

UoW: Nick Deutscher, Ronald Macatangay

NIWA, NZ: Vanessa Sherlock

Cal Tech: Debra Wunch, Paul Wennberg