Accuracy Validation of a Spectroscopic Gas Analyzer using Gravimetric Standard Gas Mixtures

Impact of Background Gas Composition on CO₂ Measurement by Cavity Ring–Down Spectroscopy

Oct. 17, 2016

Jeongsik Lim and Jeongsoon Lee

KRISS (Korea Research Institute of Standards and Science)

No wil pose sonat, mas inu ignola facilisid ctapro tae batucci vide dicta probatos dicoramas velupta isocca vide dicta probatos dicoramios referentu intellegebattuonsunati cumprilas cuvalnycorpose santum sem ade dicta probatus dicoramise volupt tuo at nonumy urbanitas jobatus dicoramice refe

PART 1 Pressure broadening CO₂

PART 2 KRISS FTS-Sun tracking observation

PART 3 Summary & Future works

The 8th Asia Pacific GHG workshop

No wil posse sonat, mes inu ignota facilisidictapro use batuscu vide dicta probatus dicoramus velupta isocu vide dicta probatus dicoramiore infermitur intellagebatuonsunat cumprilas cuvalivgovposs annum asm ade dicta ptobatus dicoramus volupt tuo at nonumy urbanitas obatus dicoramice refe.

PART 1 Pressure Broadening CO₂

- 1. Background
- 2. CRDS: Pressure broadening on CO_2 line
- 3. Measurement of broadening coefficients
- 4. summary

Background

 High precision and accurate of CO₂ &CH₄ measurement by the researcher investigating global climate change

Background

Target precision (WMO)

```
CO_2: 0.1 µmol mol<sup>-1</sup>, CH_4: 0.002 µmol mol<sup>-1</sup>(alleviate)
```


The 8th Asia Pacific GHG workshop

Well prepared standard mixtures

Experimental

Amount of CO₂ Mole fractions of the gas mixtures.

Cylinder #	Gas co	Preparation			
	CO ₂	N ₂	0 ₂	Ar	method
DF4560	400.61 (0.02%)	99.96	-	-	gravimetry
EB0011591	351.78 (0.10%)	83.45	16.48	0.04	manometry
EB0011528	353.08 (0.10%)	80.97	18.19	0.81	manometry
ME5590	386.94 (0.02%)	78.33	21.63	-	gravimetry
EB0006391	406.40 (0.10%)	78.16	20.87	0.93	manometry
ME0434	402.25 (0.02%)	78.07	21.03	0.87	gravimetry
ME5502	384.35 (0.02%)	77.57	20.53	1.86	gravimetry
ME5537	385.35 (0.02%)	70.98	18.85	10.12	gravimetry

Experimental setting and calibration

Schematic diagram: for gas plumbing to the WS-CRDS analyzer

(WS-CRDS, G-1301, Picarro, USA)

CO₂ at a wavelength of 1.603 μm
 : R(1) of the (3 00 1)III ← (0 0 0) CO₂ band

Cylinder #	CO ₂ mol	e fraction [µ	Difference ^(D)		
	CRM assigne d	before C RDS cal	after CRD S cal	[µmol/m ol]	[%]
ME0424	371.22	371.18	371.29	0.07	0.0193
ME0485	380.31	380.23	380.28	-0.03	-0.0088
ME5552	384.76	384.66	384.67	-0.09	-0.0222
ME0434	402.25	402.41	402.30	0.05	0.0117

Differences

- Differences between the measured (corrected) and assigned concentrations are also listed.
 - CO₂ concentrations determined by gravimetry, measured using the well-calibrated CRDS
 - Before correction by considering N₂-induced pressure broadening
 - Against the assigned values, excess N₂ exhibited a negative CRDS response, whereas excess Ar showed a positive deviation.

Cylinder #	CO ₂ mole fraction [µmol/mol]		Difference	
	A _{assigned value}	B _{CRDS} measured	(B-A) ^D [µmol/mol]	(B-A)% ^E (=(B-A)/A*100)
DF4560	400.61	390.84	-9.77	-2.44
EB0011591	351.78	349.62	-2.16	-0.61
EB0011528	353.08	352.05	-1.03	-0.29
ME5590	386.94	386.51	-0.43	-0.11
EB0006391	406.40	406.39	-0.01	0.00
ME0434	402.25	402.34	0.09	0.02
ME5502	384.35	384.80	0.45	0.12
ME5537	385.35	390.71	5.36	1.39

Line shapes

Types of line broadening

- 1. Natural broadening (Δv_u): Result of finite radiative lifetime
- 2. Collisional/pressure broadening (Δv_c): Finite lifetime in quantum state owing to collisions
- 3. Doppler broadening ($\Delta \nu_D$): Thermal motion
- 4. Voigt profile (Δv_V): Convolution of Lorentzian to Gaussian

$\gamma_{TPBC} = \gamma_{N_2} p_{N_2} + \gamma_{O_2} p_{O_2} + \gamma_{Ar} p_{Ar}$

	Pouchet et al.	Nakamichi et al.	HITRAN
γ_{N_2}	0.0721	0.08064	0.0778
γ_{O_2}	0.0660	0.06695	0.0702
γ_{Ar}	-	0.06312	-
Ϋ́air	-	0.078	0.0758

- ✓ Pouchet I., et al. (2004), Diode laser spectroscopy of CO₂ in the 1.6 µm region for the in situ sensing of the middle atmosphere,
 J. Quant. Spectrosc. Radiat. Transfer, 83(3-4), 619–628, doi: 10.1016/S0022-4073(03)00108-0.
- ✓ Nakamichi S., et al., (2006), Buffer-gas pressure broadening for the (3 0(0) 1)III <-- (0 0 0) band of CO₂ measured with continuous-wave cavity ring-down spectroscopy, Phys. Chem. Chem. Phys., 8(3), 364–368, doi: 10.1039/b511772k.
- ✓ Rothman L. S., et al. HITRAN 2004

Differences

Differences between the measured (corrected) and assigned concentrations are also listed.

• CO₂ concentrations determined by gravimetry, measured using the well-calibrated CRDS;

III N2 induced

- After correction by considering N₂-induced pressure broadening
- $y_{corrected} = y_{CRDS} (-606.63 \cdot \gamma_{N_2} \cdot p_{N_2} + 38.656)$

- Pressure broadenings for the investigated gas mixtures based on various pressure broadenings coefficients from different references
- Furthermore, this correction linearly drifted the CRDS responses for a wide extent of TPBC ranging 0.064 to 0.081 cm⁻¹ atm⁻¹.

Cylinder #	Pouchet et al.(a)	Nakamichi et al.(b)	HITRAN (c)
DF4560	0.0721	0.08061	0.0778
EB0011591	0.0710	0.07835	0.0765
EB0011528	0.0704	0.07798	0.0758
ME5590	0.0708	0.07765	0.0761
EB0006391	0.0701	0.07759	0.0755
ME0434	0.0702	0.07758	0.0755
ME5502	0.0695	0.07747	0.0748
ME5537	0.0636	0.07625	0.0685

 $\gamma_{TPBC} = \gamma_{N_2} p_{N_2} + \gamma_{O_2} p_{O_2} + \gamma_{Ar} p_{Ar}$

- Total pressure broadening vs. difference between the measured value by CRDS and the assigned value of the standard gas mixture
- \succ (a) and (c): Because of the lack of γ_{Ar} , the correlations to the fitted line are poor
- In practice, Huang and Yung [2004] reported that the Lorentzian width responds in a direction opposite to the peak value of the Voigt function for a fixed Gaussian width. According to the results shown in the Figure, as the TPBC increased, the differences,

*D*_{*STD-CRDS*}, decreased.

IV N2 O2 Ar induced

- ✓ Gravimetric gas mixtures of ambient air composition were utilized as calibration standards for CO₂ measurement by CRDS
- ✓ A linear shift of CRDS response was observed as a function of total pressure broadening coefficient (TPBC) ranging over 0.05 cm⁻¹ atm⁻¹
- ✓ TPBC-corrected CRDS response agreed with the gravimetric concentration of the attempted gas mixtures within 0.15% (±0.6 µmol/mol)

Cylinder #	CO ₂ mole fracti	on [µmol/mol]	Difference		
	Sample assigned value ^A	TPBC Correction value ^B	(B – A) ^c [µmol/mol]	((B-A)/A*100) ^D	
DF4560	400.61	400.82	0.21	0.05	
EB0011591	351.78	351.97	0.19	0.05	
EB0011528	353.08	353.15	0.07	0.02	
ME5590	386.94	386.47	-0.47	-0.12	
EB0006391	406.40	406.15	-0.25	-0.06	
ME0434	402.25	402.09	-0.16	-0.04	
ME5502	384.35	384.17	-0.18	-0.05	
ME5537	385.35	385.95	0.60	0.16	

Summary

- ➤ the effect of background composition on CO₂ measurement has been investigated using wavelength-scanned cavity ring-down spectrometry (WS-CRDS), taking a spectral line centered at the R(1) of the (3 0⁰ 1)_{III} ← (0 0 0) band.
 - For this purpose, eight cylinders with various compositions were gravimetrically and manometrically prepared with $1\sigma = 0.1\%$
 - Depending on the gas composition, the deviations between the CRDS responses and gravimetrically (or manometrically) assigned CO₂ concentration ranged from -9.77 to 5.36 μmol/mol.
 - The total pressure broadening coefficient (TBPC) based on the composition of N_2 , O_2 , and Ar corrected the deviations to up to 0.15%.
- To obtain accurate measurements using intensity-based optical measurement techniques such as WS-CRDS, it is imperative to calibrate the instrument based on TBPC (use air mixture within moderate composition)
- accurate CO₂ line pressure broadening coefficients can be obtained from experimental broadening measurement of accurate standard mixtures

CRMs for Greenhouse Gas Analysis

substance	Range of Certified Values in Reference Materials	Uncertainty (k=2) [U=2*u=2*]	Dissemin ation	ref
CO ₂	above 10 μmol/mol	0.08 at 380 μmol/mol		ССQМ-КЗ, 52, 120
CH ₄	above 100 nmol/mol	0.005 at 1.9 μmol/mol	Air	CCQM-P41, 82
N ₂ O	above 50 nmol/mol	0.2 at 320 nmol/mol	/ Air	CCQM-K68
СО	above 100 nmol/mol	0.3 at 350 nmol/mol	modifi ed	CCQM –K84
SF ₆ NF ₃	above 6 pmol/mol for SF ₆ above 1 nmol/mol for NF ₃ (0.5 pmol/mol after 2011)	0.06 at 6 pmol/mol for SF ₆ 0.01 at 1 nmol/mol for NF ₃		CCQM-K15,
PFCs	above 10 pmol/mol for CF ₄ above 100 μmol/mol for C ₂ F ₆ (50 pmol/mol after 2013)	0.5 at 10 pmol/mol for CF_4		ССQМ-К15,
HFCs, CFCs HCFCs	µmol/mol~50 pmol/mol for CFC 11,12,113	0.2 at 50 pmol/mol for CFC		CCQM-K83

Standard gas mixtures

CRMs for Greenhouse Gas Analysis

- Carbon dioxide, methane, nitrous oxide in nitrogen or air
- F-compounds in nitrogen or air: Semiconductor, Display, Chiller
- Stable Isotope (CNOHS) in greenhouse

CRMs for Environmental Gas Analysis

- Automobile emission test gases
- Air pollution monitoring gases: NOx, SOx, CO, O₃
- Volatile organic compounds in atmospheric air and indoor air

CRMs for Industrial Gas Analysi

- Natural gases, pipeline natural gases
- Inorganic gases for atomic power plant
- Process gas for industry application

The 8th Asia Pacific GHG workshop

PART 2 KRISS FTS–Sun tracking observation

- 1. Site: instrument, location, observation
- 2. Calibration: x(spectral), y(irradiation)

No wil pose sonat, mes inu ignota facilisidictapro sa batucci vide dicta probatos dicoramos velupas loccu vide dicta probatos dicoramore referentur intellegebattuonsunati cumprilas cuvalivgorepose santum aam ade dicta probatus dicoramore refetuo at nonum videnitas (batus dicoramore refe-

Part2: KRISS FTS-Sun tracking observation

- > Site: instrument, location, observation
- > Calibration: x(spectral), y(irradiation)
- Pressure broadening measurement

KRISS FTIR solar tracker

KRISS analyzer system: Sun tracker(A547N) + FTS(IFS120HR-upgraded) installed since Dec. 2012

KRISS FTIR solar tracker

KRISS analyzer system: Sun tracker(A547N) + FTS(IFS125HR) installed since Dec. 2012

The 8th Asia Pacific GHG workshop

KRISS Site

- KRISS FTIR observation dates

- Daily average CO2 result of FTIR observations
 - A total of 85 days (2014/6 2015/9; 16 month)
 - Preliminary result: vertical mixing ratio per daily average)

The 8th Asia Pacific GHG workshop

20

Current status of the FTIR system

• Spectral Range : 700 ~ > 14000 cm⁻¹

FTIR: New detector is installed in Jan. 2016

Detector	Source	Beam splitter
Si	Tungsten	CaF ₂
InGaAs	Globar	KBr
InSb		Quartz
МСТ		

FTIR: optical Filters

NDA	CC	Wavenumber	Availability :
Filt	er	(cm⁻¹)	KRISS FTIR
1		4000 - 4300	Not-Available
2		2900 - 3500	Not-Available
3		2400 - 3100	Not-Available
4		2000 - 2700	Available
5		1500 - 2200	Available
6		750 - 1350	Available

Cell preparation: NDACC, Khe

- Results derived from spectra recorded in Khe

 Note: for the blind icomp column retrieval, the impurity of the cell content has been neglected (but consistently in distributed retrieval recipe & retrieved columns from Khe spectra).

NDACC cell exercise

Preliminary results

➤NDACC cell comparison

N2O determined at IRWG sites 33 measurements made of 26 cells

Karlsruhe variation of cell measurements

N2o cell column amount determined by Frank Hase at Karlsrue

No	Reference Cells	Laboratory Tem	Fitted T	Fitted P	Fitted Column
#	ID	perature			amount
1	N2O-21	297.9	298.42	0.9173	4.49067E+20
2	N20-22	297.1	296.39	0.962	4.43145E+20

11 2016

1. Summary & Future works

No vel posse sonalt, mais inu Ignora facilisticitapiro sar battucci videi dicia probatus dicoramus volupta iscucu vide dicta probatus dicoramico inferentiu intellegebaduonsunalti cumprilas cuviafivigovposs sentum sam ade dicta probatus dicoramus volupt tuo at nonumy urbanitas ipsatus dicoramicore enfo

Summary & Future works

Future works

Enhancements of our FTIR analyzer performance

- Radiometric calibration: blackbody, cal. Tungsten lamp etc.
- Spectral calibration :
- ILS study
- Pressure broadening : HCl, HBr, N₂O etc.
- Data processing with GGG & PROFFIT and comparison with modeled data
 - 3 Dimensional atmospheric Chemical Transportation Model(GEOS-Chem)
 - Satellite data

Line broadening effect

- CRDS matrix effects on the line of CO₂
- Line broadening coefficients
- CO, CH₄

Thank you for attention!!

