발	간	등	록	번	호
11-	1360	0000)-001	1230)-01

기후변화감시 기술노트 2016-01 온실가스 관측업무 매뉴얼

Measurement manual on greenhouse gases

Measurement manual on greenhouse gases

- 발행처 : 기후변화감시과 서울특별시 동작구 여의대방로16길 61 전화 02-2181-0640
- 발행인 : 과장 김세원 기상연구관 이철규 기상연구사 이해영 연구원 최홍우(환경기상연구과) 연구원 고미영(환경기상연구과)
- **발행일 :** 2015년 11월

1.	개요	·· 1
2.	시간동기화	·· 2
3.	온실가스 관측흐름도	4
4.	공기시료 채취와 전처리 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 5
	4.1 공기시료채취탑과 흡입구	. 5
	4.2 다이아프램 흡입 펌프	5
	4.3 제습장치 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
	4.3.1 제습장치를 켜고 끄는 법	7
	4.3.2 제습장치 상단의 구성 및 기기이상 시 조치사항	8
5.	공동감쇠분광기 측정방법	10
	5.1 장치구성	10
	5.2 장비 ON/OFF 방법	13
	5.3 장비 교정 방법	15
	5.3.1 모델 G2301 교정방법	15
	5.3.2 모델 G1301 교정방법	19
6.	가스크로마토그래프의 운영 절차	22
	6.1 장치 구성	22
	6.2 소프트웨어 구성	27
	6.2.1 스케줄러 운영법	28
	6.2.2 분석방법(method)의 생성/변경 방법	30
	6.3 Peak integration 및 calibration 방법	42
	6.4 자료저장 방법	47
	6.5 GC의 ON/OFF 방법	49
	6.6 농축시스템 운영절차서	50
	6.6.1 시스템의 원리	51
	6.6.2 측정기기 구성	53
	6.6.3 농축시스템의 운영	56
	6.6.4 측정기기 관리	60

7. 자료수집방법 및 처리방법 64
7.1 자료수집방법
7.2 자료처리방법
8. WMO CCL과 비교실험을 위한 NOAA 플라스크 샘플링
8.1 시료 채취전
8.2 PSU 안에 플라스크 설치하기
8.3 시료채취장소에 PSU 설치하기
8.4 시료채취하기
8.5 시료내려놓기
8.6 건조모드
8.7 야장적기
머리 가 되었다. 20
누곡. 식 경미철 심심사양
기후변화감시 기술노트 발간 목록

1. 개요

WMO GAW 프로그램은 교토의정서와 몬트리얼 의정서에서 규제하는 이산화탄소(CO₂), 메탄(CH₄), 아산화질소(N₂O), 육불화황(SF₆), 할로카본계열(CFCs, PFCs, HFCs) 등을 관측 하도록 권고하고 있다(GAW report, 172). 기상청에서는 안면도 기후변화감시소(36.539 N, 126.330 E)에서 1999년부터 CO₂, CH₄, N₂O, CFC-11, CFC-12를 관측하기 시작했으며, 2007년 부터 SF₆와 CFC-113을 추가 관측해왔다. 고산 기후변화감시소(33.294 N, 126.163 E)는 2012년 부터 CO₂와 N₂O의 관측을 시작했으며 2014년부터 CH₄를 추가 관측하였다. 울릉도독도 (37.481 N, 130.899 E)와 독도(37.242 N, 131.865 E) 기후변화감시소는 2014년부터 정식운영을 통해 한반도를 중심으로 CO₂에 대한 삼각 관측망을 형성하였다.

현재 온실가스 중 CO₂ 및 CH₄는 공동감쇠분광기(Cavity Ring Down Spectroscopy, CRDS)로, N₂O, CFCs, SF₆는 가스크로마토그래프-전자포획검출기(GC-Electron Capture Detector, ECD)를 사용하여 측정한다. 본 매뉴얼은 이 모든 관측망의 온실가스 관측을 최상의 관측방법으로 통일하여 품질관리 기반을 마련하기 위해 작성되었다.

	년도 항목	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
	CO2																	
	CH4																	
아	N ₂ O																	
면	CFC-11																	
노	CFC-12																	
	CFC-113																	
	SF ₆																	
	CO2																	
고 산	N2O																	
	CH₄																	
	CO2																	
울고	CH4																	
) 도	N2O																	
	SF ₆																	
 독	CO2																	
도	CH₄																	

그림 1. 각 관측소별 온실가스 측정항목과 측정기간

2. 시간동기화

관측을 시작하기에 앞서 반드시 장비의 시간동기화가 필요하다. 과거에는 안면도의 단일 관측소로 한반도에서 운영하였으나, 현재는 고산, 울릉도, 독도 등 4곳에서 동일 요소를 관측 하여 비교 감시하고 있으며, 국제사회와의 협업 등을 통해 자료의 품질을 관리하고 있다. 따라서 시간 동기화는 자료의 품질관리를 위하여 가장 중요한 관측 요소이다. 순서는 다음과 같다.

① 컴퓨터 오른쪽 하단의 시계를 좌 클릭

② 시간창 하단의 "날짜 및 시간 설정 변경" 클릭

③ 날짜 및 시간 → 인터넷 시간 → 설정 변경

④ 인터넷 시간 서버와의 동기화 클릭

- 내부망(안면도, 고산, 울릉도): 190.1.5.46(기상청 내부망 시간서버) → 확인 혹은 190.1.5.47

혹은 172.20.181.101

- 외부망(독도, 태하등대): time.window.com → 확인

혹은 203.247.66.246(기상청 외부망 시간서버) → 확인

〈내부망〉

〈외부망〉

⑤ 다시 ③의 날짜 및 시간으로 변경 → 표준시간대 변경 클릭

⑥ 표준시간대 : (UTC+9:00) 서울 선택 → 확인

달 날짜 및 시간 · · · · · · · · · · · · · · · · · ·	
날짜: 2015년 7월 7일 최요일	
시간: 오후 4:42:26	·····································
중 날짜 및 시간 변경(D)	현재 날짜 및 시간:
표준 시간대	표준 시간대(T):
(UTC+09:00) 서울 표준 시간대 변경(2)	[(UTC+09:00) 서울 ▼
이 표준 시간대에서는 일황 절약 시간을 사용하지 않습니다.	표준 시간대 설정: 2015년 7월 7일 화요일, 오후 4:49
표준 시간대에 대한 추가 정보를 온라인에서 가져오기 시계 및 표준 시간대 설정 방법	3 (0) 3 (4)
확인 취소 적용(A)	목인 위꼬

3. 온실가스 관측흐름도

그림 2. 온실가스 측정 흐름도

온실가스 전체 흐름도는 그림 2와 같다. 공기시료는 시료채취 타워에서 (안면도 지상 40 m, 고산 지상 6m, 울릉도 지상 15 m) 다이아프램펌프(27 L/min)으로 흡입되며 냉동기형 제습 장치를 거쳐 각 장비로 유입된다. 장비 앞에는 MPV(Multi position) 밸브와 MFC(Mass flow controller)가 설치되어 있어 시료와 표준가스를 구분하여 일정한 유량으로 주입하도록 설계 되었다. CO₂와 CH₄는 공동감쇠분광기(CRDS)로, N₂O, SF₆, CFCs는 가스크로마토그래피(Gas Chromatography)로 분석한다. 최근 N₂O와 CO가 10초마다 분석되는 공진출력분광기(Integrated Cavity Output Spectroscopy-Losgatos)이 안면도에 설치되었다.

4. 공기시료 채취와 전처리

4.1 공기시료채취탑과 흡입구(그림 2-①)

온실가스의 배경농도 측정을 위해서는 주변의 온실가스 발생원에서 떨어진 곳에서 충분히 혼합된 공기시료를 흡입하여 안면도의 경우 지상 40 m 타워(해발고도 86 m)에서 공기시료를 흡입한다. 상단에 설치한 온실가스 및 반응가스의 흡입구 폴더 안에는 대기중 에어로졸 중 큰입자의 유입을 막기 위한 원형 스테인레스스틸 필터(D 4.7 cm, pore size 5 μm)가 있다. 월 1회 수거하여 새 필터로 교환하며, 사용한 필터는 초음파 세척을 한다. 순서는 아래와 같다.

그림 3. 타워에 설치된 필터 세척 전 후

필터를 적시에 교체하지 않을 경우, 흡입구가 막혀 펌프에 부하가 걸리고, 큰 입자들이 유입되어 제습관 및 시료 채취배관에 오염을 유발시킨다. 필터 오염 시 시료공급을 담당하는 부품의 미세한 유로를 막아 시료 공급 유량의 부족을 초래하여 농도에 까지 영향을 미치는 경우가 발생한다. 또한 주의할 점은 필터 교환 등의 이유로 측정탑 흡입구 주변에서 오랜 시간 머물 경우 CO₂ 농도 측정에 영향 발생함으로 가능한 작업시간을 짧게 하고 그 시간을 반드시 기록한다.

4.2 다이아프램 흡입 펌프(그림2-2)

다이아프램 흡입 펌프는 공기시료 흡입구로부터 공기시료를 흡입하여 측정장비로 밀어주는 역할을 한다. 측정장비에 충분한 유량의 시료를 공급하기 위하여 현재 다이아프램 펌프(KNF N145.1.2AN.18, Germany, 27 L/min, 7 bar)를 사용하고 있으며, 제습장치를 거쳐 각각의 CRDS와 GC로 공기가 유입된다.

펌프의 유량이 떨어지거나 펌프가 진공을 걸지 못해 실험실 내부의 공기가 유입되면, 소모품을 교환한다. 보통 가스킷과 펌프 내부의 다이아프램을 교환해 주는데, 펌프 위쪽의 둥그런 판 (가스킷)을 떼고 그 안에 새 다이아프램으로 교체한다.

- ※ 펌프와 관련 소 다이아프램과 가스킷 등은 구매 신청 후 도입까지 6주 이상 소요되므로 사전에 수요량을 파악하여 미리 구매 신청을 해야 한다.
- ※ 펌프의 이상은 보통 공동감쇠분광기(CRDS)의 값으로 인식할 수 있다. CO₂나 CH₄의 농도값이 각각 480 ppm과 2800 ppb가 넘으면 펌프의 이상을 의심하여야 한다.

(a) 다이어프램 펌프

(b) 가스킷

(c)다이아프램

그림 4. 다이아프램 흡입 펌프의 외부모습, 내부의 가스킷과 다이아프램

4.3 제습장치(그림 2-③)

펌프를 거친 공기시료는 냉동제습장치를 거친다(그림 5(a)). 두 개의 챔버로 이루어져 있으며, 24시간마다 챔버가 자동적으로 교체하여 운영된다. 한 챔버당 최대 1.8 L까지 소화할 수 있다. 먼저 전원을 켜면 냉동장치는 냉매를 이용하여 - 80℃ 까지 온도가 설정 된다. 냉동 장치 내부에 두 개의 공간을 만들어져 있으며 외부에서 - 80℃ 까지 온도를 설정하여도 첫 번째 공간에는 상온의 공기 흐름으로 인하여 내부의 실제 온도는 약 -20℃를 유지할 수 있어 1차적으로 과량의 수분을 제거한다 (그림 5(b)). 1차 수분이 제거된 공기시료는 두 번째 공간으로 유입되며, 두 번째 공간에는 스테인레스로 제작된 작은 구술이 채워져 있어서 실제 온도는 약 -50℃ 이하까지 낮출 수 있으며 이 공간에서 2차 제습이 이루어진다(그림 5(c)).

24시간동안 돌아간 챔버는 정상온도로 돌아가게 되고, 공기시료에 포함된 수분은 냉동식 제습 챔버에 응축/응고된 후 챔버의 휴지기에 액체형태(물)로 변해 펌프에 의해서 가압된

챔버 밖으로 빠져나간다(그림 5(d)). 제습장치의 경우 특별한 유지보수가 없으나, 여름철 습도가 높은 경우 bypass로 빠져나가는 공기의 양을 높여주어 챔버에 체류하는 공기의 양을 상대적 으로 줄여주거나 챔버의 교체주기를 24시간에서 12시간으로 줄어주는 등의 조치를 취할 수 있다. 그렇지 않을 경우 내부의 압력이 높아져 밖의 콘(cone)을 통해 공기가 세어나올 수 있다.

그림 5. 제습장치의 내부 모습과 제습과정 모식도

4.3.1 제습장치를 켜고 끄는 법

① 제습장치 컨트롤박스 내부의 차단기를 올린다

그림 6. 제습장치 콘트롤박스의 내부

② 외부 컨트롤박스 화면이 켜지면 'start' 버튼을 누른다. 세팅값은 아래 그림과 같다. 제습 장치를 끌 때는 'stop'을 누르고 내부의 차단기를 내린다.

그림 7. 제습장치 콘트롤박스의 외부(좌)와 압력게이지(우)

③ 제습장치 유입구 쪽에 달려있는 압력게이지가 평균적으로는 0.2 ~ 0.3 MPa를 나타낸다. 만일 0.1 MPa 이하로 내려갈 경우 공기가 새고 있을 수 있음으로 다음과 같은 조치를 취한다.

4.3.2 제습장치 상단의 구성 및 기기이상 시 조치사항

- ① 콘(cone ①)과 커플러 (coupler ②)로 이루워진다
- ② 콘: 공기유입라인(1/4["] port ③)과 바이패스라인(1/8["]bypass port ④)
- ③ 커플러: 콘과 제습 챔버를 연결해 줌. 상단은 콘과 결합되는 오링과 볼트를 고정해주는 나사산으로 되어있으며, 하단은 제습 챔버와 결합이 되는 오링과 나사산으로 되어있음 (그림 8).

(a) 콘과 커플러 (b) 커플러 전면 (c) 커플러 측면 그림 8. 제습장치 상단의 콘과 커플러의 모습

4.3.2.1 콘을 통해 공기가 새어나올 경우의 조치 사항

- ① 냉동기의 작동 전원을 OFF한다.
- ② 콘에 도포된 실리콘을 제거한다.
- ③ 콘부위에 스눕(snoop)을 뿌려 오링의 누출여부를 확인한다.
- ④ 펌프의 작동을 중지 한다.
- ⑤ 콘을 분리후 바이패스에 연결된 1/8["] 테프론 배관 (그림 8(a)의 4)의 막힘을 확인한다.
- ⑥ 바이패스 배관이 챔버안의 수분에 의해 얼어 있을 경우 따뜻한 바람 혹은 더운물을 이용 하여 녹인후 확인한다, 녹인 수분은 반드시 제거한다.
- ⑧ 바이패스 배관이 막혀있을 경우 새것으로 교체한다.

4.3.2.2 커플러의 오링에서 새는 경우의 조치사항

- ① 커플러의 오링에서 새는 경우 오링을 교체한다
- ② 커플러 상단 나사산이 약해져 새는 경우 콘 각도를 돌려 사용안한 나사산을 이용하여 조립한다. 이때 나사산이 망가져 있다면 커플러를 교체한다.
- ③ 커플러 하단 나사산에서 새는 경우 테플론 테잎을 다시감고 조립하여 확인한다. 이때 계속 새는 경우가 발생되면 새것으로 교체한다.

5. 공동감쇠분광기 관측방법(그림 2-④)

5.1 장치구성

CO₂와 CH₄를 측정하는 장치의 구성은 MPV(Multi position valve) MFC(Mass flow controller), CRDS로 구성된다(그림 9).

그림 9. 공동감쇠분광기 시스템 전체 모식도

MPV(Multi Position Valve)

보통의 기기측정기기는 시료의 주입 뿐 아니라, 표준가스, 운용가스 등 중간에 장비의 검교정과 표류오차를 측정하고 온실가스의 농도를 산출하기 위해 여러 종류의 가스가 주입이 된다. 이를 위해 CRDS앞에 MPV를 달아 놓는다. 보통 **6방 밸브** 혹은 8방 밸브로 이루어지며, 현재 CRDS에는 6방 밸브가 달려있다. 대기시료는 '1' 번에서 유입되고, 표준가스는 '2'번과 '3번'에서 유입된다. 따라서 평소 MPV가 '1'번으로 되어 있는지 반드시 확인하여야 한다.

- ① 밸브 뒷부분은 위에서부터 1, 2...5, 6의 포지션으로 되어 있고, 앞서 설명한대로, 1번에는 시료(Sample, S), 2번에는 낮은농도의 표준가스(Low, L), 높은농도의 표준가스(High, H)로 연결이 되어 있다(그림 10(a)).
- ② 오른쪽 상단에서 on을 한다(그림 10(b))
- ③ 밸브의 포지션은 왼쪽 하단의 버튼을 누르면 다음 순번의 포지션으로 넘어간다. 예를 들어 1번일 때 버튼을 한번 누르면 2번, 2번 누르면 3번으로 이동한다(그림 10(b)).

(a) MPV의 뒷면

(b) MPV의 앞면

그림 10. MPV의 뒷면과 앞면

MFC(Mass Flow Controller)

가스의 유량은 환경에 따라 그 체적의 변화가 심하므로, 일정 유량이 기기에 유입되게 하기 위해서 MFC를 사용한다. CRDS는 500 ml(cc)로 유량이 맞추어져 있다. 이 유량이 높아지거나 낮아지면 기기에 무리가 가므로 MFC가 500 ml로 맞추어져 있는지 확인한다. CRDS의 MFC는 MPV와 같은 장비에 달려있다.

- ① MFC는 판넬(전체 장비의 오른쪽 하단에 있음) 왼쪽 하단에서 전원을 켠다 (그림 11(a)).
- ② 유량을 컨트롤할 전원을 누른 후 방향키를 이용하여 세팅할 숫자의 단위를 정한다. 이 후
 Enter 버튼을 누르면, 정해진 유량으로 기기에 공기가 주입된다(그림 11(b)).
- ③ 실제 유량은 붉은색, 세팅값은 녹색 디지털로 표시된다.

(a) MFC의 앞면

(b) MFC의 유량 컨트롤박스

그림 11. MPV의 뒷면과 앞면

● 공동감쇠분광기, CRDS (Cavity Ring Down Spectrometer)

CRDS는 광학장비로 단일레이저다이오드를 이용하여 공동(Cavity)안에 빛을 쏘고 이 빛이 두 개의 거울에 반사되면서 빛이 소멸하는 시간을 측정한다. 만일 공동안에 고농도의 CO₂와 CH₄가 존재한다면 이들이 빛을 흡수하기 때문에 거울에 반사되어 빛이 소멸하는 시간이 빠를 것이다. Picarro의 장비는 설치되어 있는 반사거울의 각도와 먼지유입 등을 이유로 실무자가 보수하지 않도록 권고한다. 에러메세지가 뜨면 Picarro의 한국 에이전시나 혹은 본사에 연락을 취해 장비를 보수하여야 한다.

(a)내부 모식도 (b)원리 그림 12. 공동감쇠분광기(CRDS)의 내부 모식도 및 원리 (출처: Picarro 홈페이지)

• 장비 기본 사양

관측소	안면도	고산	울릉도독도	독도
모델명	2301	1301	2401	2301
관측요소	CO ₂ , CH ₄ , H ₂ O	CO ₂ , CH ₄ , H ₂ O	CO ₂ , CH ₄ , CO, H ₂ O	CO ₂ , CH ₄ , H ₂ O

● 표준가스 레귤레이터

그림 13. 표준가스에 사용되는 표준 레귤레이터

현재 기후변화감시소는 TESCOM 레귤레이터를 사용 중이다 표준가스 레귤레이터의 위쪽 (혹은 왼쪽) 게이지는 가스가 실린더에서 나가는 역할을 한다. 보통 40 psi를 유지한다. 나머지 아래쪽(혹은 오른쪽) 게이지는 실린더의 잔량을 표시한다(그림 13).

5.2 장비 ON/OFF 방법

• 전원켜는법

① CRDS 본체 왼쪽 아래의 전원을 켠다.

② MFC의 유량확인: 500 mL/min

- ③ 모니터 바탕화면에서 아이콘 데이터뷰어(Dataviewer 🧟) 아이콘 클릭 한다.
- ④ 데이터뷰어 창이 뜨면, Cavity 압력은 140 Torr까지, Cavity 온도와 Warm chamber의 온 도가 45℃에 도달할 때까지 스스로 측정기 워밍업을 시작한다.

- ⑤ Cavity 압력이 140 Torr, 온도가 44.6~44.9 ℃ 이상 도달하게 되면 측정기는 precision mode로 전환되어 CO₂/ CH₄/ H₂O 성분들에 디스플레이 된다.
- ⑥ 이상 없이 측정모드로 진입한 것을 확인하신 후 측정 시작한다.

CARRO	Carb	on Diovide Methane	and Water Vanor An	alvzor	
	Carb	on bioxide, methane	and mater vapor An	aijzei	
Øystem Karm					
Cold Andrea 11					1
and the second se					1
CO2 (ppm)					
409.301					
att des slope Nilles att	00 M HE 2	40 10 10 4 25 Jun 1075	NOUSE .	0.000	81341
a second manual second s					
1 OCE	1			2	
1.965					
all per period					
H20 (%)					
0.016					
117.0m 11.27.00.2	612222.8	14.20 00.6	14.21.21.2	422242	
the second second	NO0201	- Generati		. Hoke and	
Shidowe 12					
Party and a second					
Concern Concernitional					
anne 2 at-					
Conception Avecation					
-Jostas Status	0.00.002	10.004	C BREAK C	1000	10.00
	and the second s	Property lies			
Towned 12%-225 Annual	P Destart 112	W Parase art W JAN-SCAN			
Barriel (PACE-Armine	W Desite 2 420	Person art in Adultan	(Contractory)		
2010 KG 40 HI D4-	4 Tera kont HB				
10.010 HERE	C report to compare				
BOOD HIM					

● 전원끄는법

① 현재 상태에서 측정기 프로그램의 Shutdown을 선택한다.

ICARRO		Carbo	Dioxide, Methane	and Water Vapor Ana	alyzer	
Autori System Kare Try Tornadalle Official and						-
CO2 (ppm)						
409.301	10	88.86.82 13-36-1815	40 10 40 + 25 - 26 - 26 - 27	NAME TAXABLE	114113 25-26-102	10.00.00 21.00-1
CH4 (ppm)	17					1
						-
0.016	82	4234	14.27.02.4	9.200	14.22.26.2	
Subtract 1	4.4817	the second se	- tookatti.		1.	
Redef User Copic						
Jan Jung - 168 Lan Jung - 168 and annu Jung Jung 2017 20 Saint Jan Jan Jan Jan Jan Jan			1.			
Plant.		\$5.0e-10%	10.04-012	Par-101	1.00.00	Plant
finera () finera () finera ()	FACE Anagana 🦉 Dana FACE Anagana 🔗 Dana FACE Anagana 🔗 Dana	er 8 444 er 8 04 er 8 400	Parant ant Addresser Parant ant Parant ant Parant ant Addresser Parant ant Addresser	Constants.		
201.0 201.0 201.0	113 10.2223 Two based	and a set				
	the second second					

② 왼쪽하단의 시작에서 윈도우의 종료를 선택하여 장비를 완전히 끈다.

5.3 장비 교정 방법

5.3.1 모델 G2301 교정방법

 표준가스는 총 4개를 사용한다. 주로 350 ~ 450 ppm 사이의 농도를 일정간격으로 선택 하고 표준가스실(제습실)에 CRDS Low에는 낮은 농도 2개를, CRDS High에는 높은 농도 2개를 연결한다. High는 MPV의 2번 채널에, Low는 MPV의 3번 채널에 연결되어 있다.

② 멀티 포지션 밸브 이용해서 MPV의 밸브 포지션을 2번으로 바꾼다 (MPV의 조작법은 4.1을 참고).

(a) MPV의 뒷면

(b) MPV의 앞면

③ 포지션 밸브를 바꾸자 마자, 데이터뷰어창에서 Restart_user_log 버튼을 클릭하면 그 밑의 초록 창에 새로운 데이터파일의 이름이 생성된다.

- ④ 표준가스를 바꿀 때마다 ②~③을 반복하고, 한 표준가스당 40분씩 주입한다. 즉, ②→③ →40분 주입을 표준가스 개수에 따라 반복한다.
 - ※ 이 때 주의해야 할 점은 표준가스실에 2번에 낮은 농도(Low)가 3번에 높은 농도(High)가 연결되어 있는지 확인할 것.
- ⑤ 측정한 자료는 다음과 같이 찾는다
 디렉토리는: C 〉 picarro 〉 userdata 〉 datalog_user 〉 해당연도(예 2015) 〉해당월(예 08)〉 해당일 (예 01) 〉 ②에서 생성된 파일명을 선택
- ⑥ 선택한 파일은 엑셀에서 평균하여 구한다. 계산 시, 최초 26분간 삭제 → 이후 5분을 평균내고 → 그 후의 값은 삭제 한다. 총 4개의 표준가스를 주입했으므로 4개의 평균값을 구한다.
- ⑦ CRDS의 메인화면에서 Data Recal() 클릭한다.
- ⑧ Picarro Data Recalibration 창이 뜨고 Used for Recal 4개 체크한다(표준가스 사용갯수 만큼 체크한다. 만일 2개를 사용했다면 2개만 체크한다).

⑨ 실제 시료농도 값과 ⑥에서 계산된 농도값을 각각의 컬럼에 입력한다. 예를 들어 430 ppm의 표준가스를 40분동안 주입한 후 ⑥번처럼 구했을 경우 나온 값이 431 ppm 이라고 한다면 1)에는 430, 2)에는 431을 적는다.

※ 실제 농도를 모를 경우, 아래 박스에 지시한 방법으로 농도를 찾는다.

					0-				
				\rightarrow	ave	2	값으로 나	타난 농	동도를 적
	6	Reference G	as Calib	oration Results					
		Serial Number		CB09638			1		
CO2 CALIBRA Og maing ratios about	TION S	Ges Species: Submit • SUMMARY F WM0 X2007 scale.	ORTAN	© CO3 CH4 CO N50 SF6	8				
Filling Code A	CO2 result	s are informational va	lues only.						
Date	Loc In	nst Pressure	Value	5.D. N	um As	9	Sdev		
			361 74	0.00	1000000				

⑩ Calibration Options를 Offset+Slope로 바꾼다. Apply New cal 클릭

① 아래와 같은 팝업창이 뜨면 Yes를 클릭한다. 교정항목만 바꾸어 반복한다.

12 표준가스 장부를 만든다.

	표준가스 장부 서식										
	1. 각 항목별 표준가스 장부를 만든다.										
L	2. 표준가스의 장부서식은 다음과 같다(예시).										
L	※ 이 정보는 향후 값을 재산정하는데 굉장히 중요한 값으로 사용됨										
L	3 이는	반드시	보유하고 있(어야 한다							
L											
	번호 항목 실린더 가스 표준가스 농도 최초압력 실린더용량										
	1	CO ₂	CB09838	NOAA	WMO	351.72	125 psi	30 L			

① 390 ~ 430 ppm 사이의 4개의 표준가스를 이용해 교정을 실시한다.

② shutdown시 shutdown in current status를 선택하여 운영프로그램을 종료한다.

③ C 〉 picarro 〉 CFADSXX 〉 GUI 폴더 내 picarro.ini 파일의 calibration section 에서 CONCENTRATION_(CH4 와 CO₂)_USER_INTERCEPT와 CONCENTRATION_((CH4 와 CO₂)_USER_SLOPE를 초기화 시킨다(slope=1,000, intercept=0.00).

Picarrocrds.ini - Notepad	
File Edit Format View Help	
[CALIBRATION] CONCENTRATION_CH4_GAL_INTERCEPT=-0.00033 CONCENTRATION_CH4_GAL_SLOPE=0.09599103 CONCENTRATION_CH4_RATIO_SLOPE=0.00982 CONCENTRATION_CH4_BATIO_QUAD=0.0002393 CONCENTRATION_CH4_DSER_INTERCEPT=0.015539704 CONCENTRATION_CH4_USER_SLOPE=0.996362120 → 1.000	~
CONCI_=CH4_CONC_PPMV_FINAL CONCI_INTERCEPT-CONCENTRATION_CH4_GAL_INTERCEPT CONCI_SLOPE=CONCENTRATION_CH4_GAL_SLOPE CONCI_RPI=H2O_CONC_F CONCI_RPI=RATIO-CONCENTRATION_CH4_RATIO_SLOPE CONCI_RPI_RATIO-QUAD=CONCENTRATION_CH4_USER_INTERCEPT CONCI_LUSER_INTERCEPT=CONCENTRATION_CH4_USER_SLOPE CONCI_USER_SLOPE=CONCENTRATION_CH4_USER_SLOPE	
CONCENTRATION_H20_CONC_INTERCEPT=0.00 CONCENTRATION_H20_CONC_SLOPE=0.772 CONCENTRATION_H20_CONC_QUAD=0.019493 CONCENTRATION_H20_USER_LNTERCEPT=0.00 CONCENTRATION_H20_USER_SLOPE=1.000	
CONC2+H20_CONC_F CONC2 THISRCEPT=CONCENTRATION_H20_CONC_INTERCEPT CONC2_SLOPE=CONCENTRATION_H20_CONC_SLOPE CONC2_QUAD=CONCENTRATION_H20_CONC_QUAD CONC2_TP1=H20_CONC_F CONC2_TP1=H20_CONC_F CONC2_USER_INTERCEPT=CONCENTRATION_H20_USER_ISLOPE CONC2_USER_SLOPE=CONCENTRATION_H20_USER_SLOPE	
CONCENTRATION, CO2_GAL_INTERCEPT0.0568 CONCENTRATION, CO2_GAL_SLOPE-0.0783725595 CONCENTRATION, CO2_RATIO_SLOPE-0.01200 CONCENTRATION, CO2_USER_SLOPE-0.01200 CONCENTRATION, CO2_USER_SLOPE-1.005802548 - 1.000	
CONC3=GALPEAV14_FINAL CONC3=INTERCEPT-CONCENTRATION_CO2_GAL_INTERCEPT CONC3_SLOPE=CONCENTRATION_CO2_GAL_SLOPE CONC3_BP1=H2O_CONC_F CONC3_BP1_RATIO=CONCENTRATION_CO2_RATIO_SLOPE CONC3_BP1_RATIO=QUAD=CONCENTRATION_CO2_BATIO_QUAD CONC3_USER_SLOPE=CONCENTRATION_CO2_USER_SLOPE CONC3_USER_SLOPE=CONCENTRATION_CO2_USER_SLOPE	

④ MPV의 위치를 2번(저농도)으로 변경한다.

- ⑤ Start Instrument를 실행시켜 운영프로그램을 가동한다.
- ⑥ MPV 2번을 40분간 유지한 후 MPV의 위치를 3번(고농도)으로 변경시켜 40분간 유지한다.
- ⑦ ⑥에서 측정된 자고 농도의 표준가스에 대하여 이산화탄소 및 메탄에 대한 평균농도(앞에서 20분 제거 후 10분 농도의 평균)를 구한다.
- ⑧ ⑦을 이용하여 각각에 대한 slope(a)와 intercept(b)를 구한다.

⑨ ②를 수행하고 C > picarro > CFADSXX > GUI 폴더내 picarro.ini 파일의 calibration section (b) CONCENTRATION_(CH₄와CO₂)_USER_INTERCEPT 와 (a) CONCENTRATION_ (CH₄와CO₂)_USER_SLOPE에 ⑦의 값을 적어준다.

10 ④ ⑤ ⑥ 과정을 다시 수행한다.

 ⑩에서 나온 자료의 평균을 구하고 표준가스의 값과 비교하여 CO₂의 경우 ±0.2 ppm CH₄의 경우 ±5 ppb 범주에 들어가면 MPV를 1번(시료)으로 바꾸고 관측을 시작한다.

12 표준가스 장부를 만든다.

표준가스 장부 서식

1. 각 항목별 표준가스 장부를 만든다.

2. 표준가스의 장부서식은 다음과 같다(예시).

※ 이 정보는 향후 값을 재산정하는데 굉장히 중요한 값으로 사용됨

3. 이는 반드시 보유하고 있어야 한다.

번호	항목	실린더 번호	가스 제조회사	표준가스 Scale	농도	최초압력	실린더용량
1	CO ₂	CB09838	NOAA	WMO X2007	351 <u>.</u> 72	125 psi	30 L

6. 가스크로마토그래프의 운영 절차(그림 2-5)

가스크로마토그래프의 경우 하드웨어적 속성과 소프트웨어 속성으로 나뉜다. 하드웨어 구성은 5.1에 설명이 되어 있고, 소프트웨어 구성은 5.2에 설명이 되었다. 가스크로마토그래프에 이 두 가지요소가 함께 시행될 때 가장 안정적으로 운영할 수 있다.

6.1 장치 구성

그림 14. 가스크로마토그래피-전자포획검출기를 이용한 측정 흐름도

제습장치를 거친 공기시료는 MPV - MFC - sample loop - GC system으로 이동한다 (그림12). 다만 SF₆만 MFC와 샘플링밸브사이에 전처리장치를 부착하여 측정한다.

• 장비기본사양

감시소	N ₂ O	CFCs	SF_6
안면도	7890A	7890B	6890N
고산	7890A		
울릉도	6890N		7890A

* 모두 전자포획검출기(Electron Capture Detector, ECD) 사용

MPV(Multi Position Valve)

GC시스템에는 두 개의 밸브가 설치된다. 하나는 CRDS와 마찬가지로, 시료와 표준가스를 구분하는 MPV 밸브이고, 다른 하나는 주입된 표준가스/시료와 운반가스를 구분하는 밸브 (Valco sampling valve)이다. 현재 기후변화감시소의 모든 GC에는 맨 처음 단에 위치한 MPV의 경우 시료가 1번, 표준가스가 2번으로 주입되도록 설치되어 있다. 소프트웨어에서 이를 조정하여 시간이 되면 1번과 2번으로 바뀌도록 지정해 놓는다. 이는 5.2에서 설명하도록 한다.

MFC(Mass Flow Controller)

GC와 연결된 MFC는 다채널로 되어 있다. 사용하지 않는 것은 각 채널의 버튼을 눌러서 막아둔다. 현재 CH1에는 CH4 (GC-FID 용), CH2에는 N2O/CO (Losgatos)와 CH3에는 CFCs (GC-ECD)가 사용중이며 나머지 CH4와 CH5는 버튼을 눌러 밸브 사용을 막아놓고 있다. 현재 윗줄은 세팅값, 아랫줄은 실제 유량을 나타낸다. 세팅값의 변화는 SET: 값을 고정, MOV: 이동, ENT: Enter 버튼을 이용해 값의 변동을 줄 수 있다.

그러나 기본적으로 GC는 100 ml./min, CRDS-Picarro는 50 ml/min, ICOS-Losgatos는 150 ml/min, 전처리장치가 달린 경우 약 500 ml/min을 기준한다. 현재 SF6만 전처리 장치가 달려 있으며, 전처리 장치 내에 MFC가 연결되어 있으며 약 433 ml/min이 흐르고 있다. 전처리 장치의 오른쪽에 MFC가 설치되어 있다.

그림 15. 안면도 기후변화감시소의 GC 및 ICOS-Losgatos와 연결된 MFC의 (a) 전면 과 (b)후면 (c) SF₆의 전처리 장치에 설치된 MFC

표 1. 각 감시소 별 MFC의 세팅된 유량

감시소	N ₂ O	CFCs	SF_6
안면도	100 ml/min	100 ml/min	433 ml/min
고산	100 ml/min	_	_
울릉도독도	100 ml/min	_	100 ml/min

● 샘플링밸브와 샘플 루프

MPV는 시료와 표준가스를 구분하여 주입했다면, 발코 샘플링 밸브는 MPV에서 걸러진 공기와 운반가스를 구분하여 주입하는 역할을 한다. 그림 9에 보면 일반적인 발코 밸브의 구성이 나와 있다. 먼저 대기상태(ready/off)에서는 시료가 지속적으로 샘플루프를 지나 벤트로 빠지면서 샘플루프안에 시료로 충분히 채워진다(그림 16의 (a)). 그러나 주입(injection)이 되면, 샘플은 바로 버려지게 되고 (1번과 2번 연결) 운반가스가 샘플루프와 연결이 되면서 샘플 루프에 채워진 시료를 밀고 컬럼으로 연결되어 주입된다.

이 조건은 시간으로 결정되며 소프트웨어에서 이를 조절할 수 있다. 이는 5.2에 설명되었다.

(a) 대기상태 (off 상태 혹은 Load 상태) (b)주입상태 (on 상태 혹은 injection 상태) 그림 16. 가스크로마토그래피의 샘플링 밸브 모식도

표 2. 각 감시소 별 설치된 loop 종류

감시소	N ₂ O	CFCs	SF ₆
안면도	약 5 cc	약 5 cc	loop: 전처리장치
고산	약 5 cc	-	-
울릉도독도	약 3 cc	_	약 5 cc

샘플링루프는 GC의 피크를 키우기 위한 하나의 수단으로 활용된다. 피크의 면적이 작을 경우 샘플루프의 양을 조절하여 피크를 키울 수 있다. 현재 설치된 샘플링루프의 종류는 표 2에 제시되어 있다. 만일 샘플링 루프를 바꾸고 싶다면 방법은 다음과 같다.

- ① GC 상단의 커버를 열고, 루프가 들어있는 밸브박스의 나사를 푼다
- ② 나사를 풀고 밸브박스를 연다
- ③ 밸브박스를 열면 주입 밸브와 루프가 설치되어 있다
- ④ 루프가 연결된 밸브의 번호를 확인하고 여기에 맞춰 새로운 루프로 교체 한다.
- ⑤ 다시 주입구 박스를 닫을 때 나사와 연결된 곳을 잘 맞추어 닫는다. 이 때 주의하지 않으면 밸브박스가 들여 압력의 변화를 가져오게 된다.

• 가스크로마토그래프의 컬럼

가스크로마토그래프 오븐 안에 컬럼이 있으며 보통 온실가스에는 충전제가 있는 paked 컬럼을 사용한다. 각 관측소별 컬럼의 종류는 표3에 제시된 바와 같다.

표 3. 각 감시소 별 설된 컬럼 종류

감시소	N ₂ O	CFCs	SF ₆
안면도	Porapack-Q 12 ft, 1/8 inch	Resil-C 12 ft, 1/8 inch	Aumina 12 ft + 6ft, 1/8 inch
고산	Porapack–Q 12 ft 1/8 inch	_	_
울릉도독도	Porapack–Q 12 ft 1/8 inch	_	Aumina 12 ft, 1/8 inch

현재 설치된 컬럼들은 여러 실험을 거쳐 최적의 컬럼을 나타낸 것이다(WMO GAW report No.222). 만일 컬럼이 오염되었거나, 성능이 좋은 컬럼으로 바꾸고 싶다면, 다음과 같이 세팅 한다. 대기의 오염상태에 따라 컬럼의 교체주기는 다르지만 보통 안면도를 기준하면 1년에 한번정도 교체한다.

• 가스크로마토그래프의 검출기

가스크로마토그래피에 연결되는 GC는 여러 가지 종류가 있으나 현재 이 관측 매뉴얼에서는 전자포획검출기(Electronic Capture Detector)을 다룬다. 전자포획검출기의 경우, 방사선 동위원소를 사용하므로 기기를 새로 도입하였거나 위치를 이동할 시 한국원자력안전기술원 (원자력안전법 제53조 2항 같은법 시행령 제82조 및 같은법 시행규칙 제68조 1항 관련)에 신고 해야 하며, 일년에 한번 방사선안전관리교육을 받아야 한다. 따라서 유지보수가 쉽지 않으며, 반드시 업체를 통해서 유지보수를 한다.

전자포획검출기의 원리는 다음과 같다.

- 1) 방사선 동위원소(63Ni) → β 입자 생성(고에너지 전자)
- β입자와 운반가스 → (충돌하여) 낮은 에너지 전자(이차전자)로 변환
- 3) 할로겐화합물 + 이차전자 → 음이온 생성 + 에너지
- 4) 남은 이차 전자를 포획하여 측정

따라서 농도가 높을수록 포획할 수 있는 전자의 수는 감소되어 검출기 셀의 전류를 기준 값 이하로 감소시킨다. 반면 시료가 없을 때는 전류가 정상적으로 돌아오게 된다. 그 결과 음의 봉우리가 생기며 증폭되는 동안 기록기의 의해 양의 방향으로 전환된다.

● 표준가스 레귤레이터

표준가스의 레귤레이터의 일반 구성은 CRDS의 시스템과 같다. 유량의 흐름은 40 psi 로 고정시켜 한번에 고압이 기기안으로 들어가지 않도록 주의한다.

6.2 소프트웨어 구성

GC는 MFC를 제외하고는 모두 GC자체 프로그램으로 설치된 하드웨어를 운영한다(그림 17).

그림 17. 가스크로마토그래피의 소프트웨어 구성 모식도

- 스케줄러: 시간에 따라 실행프로그램을 조정하는 역할을 한다. 시료를 분석할 때는 시료 분석법을 실행프로그램에 불러와 운영하고, 표준가스를 분석할 때는 표준가스 분석법을 실행프로그램에 불러와 운영한다. 자세한 설명은 5.2.1에 설명한다.
- 시료/표준가스 분석법: 분석법(method) 생성/편집은 5.2.2.에 서술되어 있다. 다만 스케줄러 에서 GC 7890의 경우 sequence를 불러야 하며, GC 6890의 경우 method를 불러야 한다. 상세 방법은 아래와 같다.
- 6.2.1 스케줄러 운영법

스케줄러는 GC의 실행프로그램이 (Instrumnet online)이 짜여진 스케줄에 따라 운영프로 그램을 움직이는 메니저역할을 한다. 그 작성법은 다음과 같다.

- ① 바탕화면 Scheduler 클릭하고 작성 연월일, 시간 변경한다.
 - Date: 월/일/년 입력
 - Time: 정시를 입력.

- Command: Date와 Time 에 따라 분석될 시료의 방법(Method 혹은 sequence)를 Run한다.

단, 시료와 표준가스를 분석하는 MPV가 다르기 때문에 시료→표준가스 혹은 표준가스→ 시료로 바뀐다면, 시료와 표준가스를 분석하는 각각의 방법을 다운로드하는 스케줄을 한 번 더 넣어준다. 현재 GC로 분석되는 모든 가스는 5시, 11시, 17시, 23시에 표준가스가 주입되고 있다.

			표준가	스를 분석하는	method		
🚆 Agilent	Chem	Station Sc	heduler (Schedule not	saved)	-	×
SF6	-		3. BB B	日 注 ?	08/21	13:24	
Date	Time	C	ommand /	Mode	I	Result	
08/22/2015	09:00	RunMethod	/	Do Daily	10710		
08/22/2015	10:00	RunMethod		Do Daily	William Point States		
08/22/2015	10:55	LoadMethod,	'NEW_ST.M"	Do Daily	THE PARTY		
08/22/2015	11:00	RunMethod	and which the	Do Daily	1034	International International	
08/22/2015	11:55	LoadMethod,	'NEW SP.M"	Do Daily	and the second second		
08/22/2015	12:00	RunMethod		Do Daily	The second second		
08/22/2015	13:00	RunMethod	/	Do Daily	() ()		

시료를 분석하는 method

그림 18. 스케줄러의 예시(6890의 예시)

Instrument 1	K		三?	12/21 13:53	
Date	Time	Command	Mode	Result	
12/22/2015	10:00	RunSequence	Do Daily		
12/22/2015	10:50	LoadSequence,"STD_N20.S"	Do Daily		
12/22/2015	11:00	RunSequence	Do Daily		
12/22/2015	11:55	LoadSequence,"SP_N20.S"	Do Daily		
12/22/2015	12:00	RunSequence	Do Daily		
12/22/2015	13:00	RunSequence	Do Daily		
12/13/2015			Do Once		-

그림 19. 스케줄러의 예시(7890의 예시)

그림에서 보면 9시와 10시에 각각 시료가 GC에 주입되나 11시에는 표준가스가 주입되어야 하므로 10시 55분에 표준가스를 분석하는 method("항목_STD.M/항목_ STD.S)를 다운로드 (load) 한다. 표준가스 분석이 끝나면 다시 시료가 주입되야 하므로 11시 55분에 시료를 분석 하는 method("New_SP.M")를 다운로드(load) 한다. 이렇게 바꾸면 다시 12시부터 시료 분석 이 들어간다. GC 모델 중 7890의 경우 method 대신 sequence를 다운로드하며, 확장명이 *.S 로 끝난다.

② 현재부터 24간 후 까지의 스케줄을 입력한다.

- ③ 앞에 사용된 스케줄은 회색으로 변하므로 지워준다(지울 범위를 드래그 한 다음 상단의 가위모양을 누른다).
- ④ 새로운 스케줄러를 작성할 때도 앞의 스케줄러를 복사하여 뒤에 이어붙이면 된다. 다만 날짜를 변경하고 method의 run과 load가 구분되었는지, 사용할 method의 이름이 올바르게 입력되었는지 확인한다.

※ GC 6890의 method를 만드는 방법은 5.2.2.2를 참고하시오.

※ GC 7890의 method와 sequence를 만드는 방법은 5.2.2.1을 참고하시오.

6.2.2 분석방법(method)의 생성/변경 방법

Method는 크게 두 가지의 조건을 생성 및 변경하여 하나의 Method로 저장한다. 1) 실제 분석을 위한 하드웨어적 조건을 잡는 *Method and Run control*과 2) 분석된 자료를 보다 정량적으로 산출하도록 소프트웨어적 조건을 잡는 *Data analysis*이다. 이 두 가지를 모두 해 주어야 정확한 분석이 된다.

● Method and Run control (5.2.2.1과 5.2.2.2 참고)

MPV, 샘플링 밸브, 컬럼 내부의 유량, 오븐온도조건, 검출기 온도, 메이크업 가스 유량, 운반가스의 유량 등 여러 옵션을 통해 최적의 상태로 유지하여 분석하도록 되어 있다. 이 부분을 잘 조절하여 피크를 분석하기 위해 분석방법(Method)를 생성한다. 각 측정 항목에 따른 조건 표를 다음 표4, 5, 6에 제시하였으며, 분석기기의 모델이 6890일때와 7890일 때 어떻게 입력하는지 설명하였다. Method 프로그램에는 총 10~11개의 아이콘이 있다. 여기서 우리가 조정할 아이콘은 이 중 4~5개 정도가 된다. 각 항목의 조건은 표 4~6

Data analysis (5.3 참고)

Data analysis는 성분 peak를 어떻게 잘 detection 할 수 있는지를 조건을 조정하고 주입된 표준가스의 농도를 지정하여 이를 반영해서 시료의 농도를 산출하도록 하는 시스템이다.

하목	측정 조건	입력장소
MPV	시료: 1, 표준가스: 2	١
	※ 프로그램 상 샘플링 밸브의 ID는 #7	Valves Events
샘플링밸브	Load time: 10.1, On: 10.1 Off:10.5	
	※ 프로그램 상 샘플링 밸브의 ID는 #1	Valves Events
주입시간	0.4 min (10.5 - 10.1 = 0.4 min)	Valves Events
분리관	Porapak-Q (80/100, 1/8″, 12 ft), 유량/부피: 23 psi Post run: 44 psi	Columns
오븐 온도	Step 1: 35℃에서 20 min 유지 Step 2: 20℃/min 로 200 ℃온도 상승 (8.25 min) Step 3: 200 ℃에서 10min 유지 maximum: 250℃	Oven
총시간	38,25 min	Oven
검출기/검출기 온도	μ−ECD / 375℃	Detectors
보조가스	유량: 5 ml/min	Detectors
운반가스/유량	CH4 5 %/Ar 95 % / 23 mL/min	×
시료 유량	0.75 ml/min	×
※ 시료 유통	량. 운반가스 유량, Inlet의 온도설정 등 프로그램 지정 필요	요 없음.
Total Flow	44 mL/min	

표4. N₂O의 세팅조건 (5.2.2.1.을 참고하시오, 7890)

하목	측정 조건	입력장소
	시료: 1, 표준가스: 2	
MPV	※ 프로그램 상 샘플링 밸브의 ID는 #7	Valves Events
새프리배너	Load time: 0.01, On: 0.01 Off:1.00	
	※ 프로그램 상 샘플링 밸브의 ID는 #1	Valves Events
주입시간	0.4 min (10.5 - 10.1 = 0.4 min)	Valves Events
	Porapak-Q (80/100, 1/8", 12 ft),	
분리관	유량/부피: 23 psi Post rup: 44 psi	Columns
	Step 1: 35℃에서 5.5 min 유지 Step 2: 5℃/min 로 45 ℃온도 상승 후 6.5 min 유지	Is the I
오븐 온도	Step 3: 5℃/min 로 70 ℃온도 상승 후 3.5 min 유지 Step 4: 20℃/min 로 150 ℃온도 상승 후 10 min 유지	Oven
	maximum: 220℃	
총시간	36.5 min	Oven
검출기/검출기 온도	μ−ECD / 350℃	Detectors
보조가스	지정안함	Pelestor
운반가스/유량	N ₂ 99.9999% / 25.7 mL/min (섴정안함) 운반가스 종류 화인	×
시됴 유량	1.0 ml/min	×
※ 시료 유	유량. 운반가스 유량, Inlet의 온도설정 등 프로그램 지정 필요	없음.
Total Flow	30.8 mL/min	-

표5. CFCs의 세팅조건 (5.2.2.1을 참고하시오. 7890)

항목	측정 조건	입력장소
	시료: 1, 표준가스: 2	~ (
MEA	※ 프로그램 상 샘플링 밸브의 ID는 #7	v
새프리배티	Load time: 0.00, On: 0.00 Off:0.1	√ (
9595 -	※ 프로그램 상 샘플링 밸브의 ID는 #1	V DO RUDO
주입시간	0.4 min (10.5 - 10.1 = 0.4 min)	✓(∨
분리관	Activated Alumina F1 (80/100, 1/8", 12 ft), Constant flow : 20.0 ml/min	Co
오븐 온도	Step 1: 35℃에서 28 min 유지 Step 2: 30℃/min 로 170 ℃온도 상승 후 15 min 유지 maximum: 450℃	Oven
총시간	47.5 min	
검출기/검출기 온도	μ−ECD / 320℃	√ = € Detectors
보조가스	지정안함	V = Detectors
운반가스/유량	CH4 5 %/Ar 95 % / 25.7 mL/min	×
시료 유량	10 ml/min	×
※ 시료 유	우량. 운반가스 유량, Inlet의 온도설정 등 프로그램 지정 필요	없음.
Total Flow	20.6 mL/min	✓= j Inlets

표6. SF₆의 세팅조건 (5.2.2.2를 참고하시오. 6890)

6.2.2.1 GC 7890의 생성/변경 방법

- 7890의 경우 총 4개의 파일(①시료용 method와 ②시료용 sequence 파일, ③표준가스용 method와 ④표준가스용 sequence 파일)을 생성해야 한다.

- 시료용과 표준가스용은 기본적으로 모든 분석조건은 같지만, Valve position과 파일이름이 다르다. 이는 아래에 서술되어 있다.
- 여기서는 Method와 Sequence 파일을 만드는 법을 서술한다.
- Sample method 만드는 법
- ① 바탕화면의 프로그램(online)을 선택한다. → 기본적으로 Method and Run control로 지정이 되어 있다. → 수정할 Method를 부른다.

🚇 Instrument I (online): Method & Run (Control _ 🗖 3	×
File BunControl Instrument Method Sequence	e <u>V</u> iew <u>A</u> bort <u>H</u> elp	
Method and Run Control N20_MIN.M	N20.S Run Method	
1 N20_MIN.M 2 METHAN.M 3 TEST M		
Ready 4 UECD,M 5 FIDECD,M	Method Sequence: N20_MIN.M NC N20.S	
Online Plot SN20STD,M ZNPD ECD M	- C × emStation Status	
back detector & ISTD_EX.M	Ready	
Hz 9 DEFOLDGC.M 10 DEF_GC.M		

- ② Instrument에서 Edit Parameters에서 ECD의 Method 조건을 확인한다.
- 1) Valve에 아이디 지정 및 Load time 지정

		0	Ju X 1	1
ALS Val	es Columns Oven Detectors /	Aux Heaters Events	Signals Configuration Count	ers Readiness
Valve	Туре	On	Position	Load Time (min)
#1	Gas Sampling Valve		N/A	10.1
#2	Not Installed		N/A	N/A
#3	Not installed		N/A	N/A
#4	Not Installed		N/A	N/A
#5	Not Installed		N/A	N/A
#6	Not Installed		N/A	N/A
#7: Valve #7	Multi-Position Valve		1	N/A
#8	Not Installed		N/A	N/A

- Agilent 사의 경우 무조건 Gas sampling Valve#는 1번을 부여하고, Multi position valve# 는 7번을 부여함(맨 왼쪽 컬럼).
- Gas sampling Valve의 Load Time은 그림9(a)의 상태를 말하는 것으로 그림에서는 10.1분 동안 loop 에 시료를 채운다는 의미임.
- Multi potision valve의 Position 은 시료의 경우 1번으로 지정, 표준가스의 경우 2번으로 지정한다.

2) Event

ALS Ru	ntir	Valves	Columns	Oven	Detectors	Aux Heaters	Events	Ju. Signals	Configuration	1.2 Counters	Readness	 Delete	Append
Γ	_		Time (m	in)	*	Event	Туре			Position		Setpoint	
F	1				10.1			Val	/e		Valve 1		On
	2				10.5			Val	/e		Valve 1		Off
	3				11		Multi	i-Position Val	/e		Multi-Position Valve 7		1
*													0

- Load time은 10.1분까지 지속되므로, 10.1분에 밸브를 열어줘 GC 안으로 시료가 들어 가게 해줌.
- 10.1분부터 10.4분까지 0.4분동안 시료가 GC 안으로 들어감.
- 11분부터 Multi-position valve가 1번으로 시료가 들어감.
- 3) Column 유량 입력
 - Post run: 44 psi, columns pressure: 23 psi

4) oven 입력(표4 참고)

ALS	Valves	Columns	Oven	Detectors	Aux Heaters	Events	Jac. Signals	Configuration	1,2, Counters	Readiness		
ALS Oven Equilibratic Smir Assimum (250) O	Temp On on Time Deven Temp TC verride Col cool Temperatu Sut Detection	re:	10 °C		 (Initial) Ramp 1 * 		Rate *C/min	20	Value *C	200 200 200 200 200 200 200 200 200 200	Hold Time min 20 10	Run Time min 20 38.25
				L	Pos	Post Run: t Run Time:	35 °C 0 min					

- 5) 검출기 온도 설정 및 보조가스 유량
 - 보조가스는 현 시스템에서는 쓰이지 않지만, 7890의 경우 보조가스를 체크하지 않으면
 에러가 나므로, 5 ml/min 정도로 유지를 해줌.

ALS	() Valves	Columns	(Ven	Detectors	Aux Heaters	Events	Ju_ Signals	Configuration	1,2, Counters	Readiness
µECD - I	Front									
μEC	D									
🕑 He	eater:			350 °C						
🗹 Ma	akeup Flow:	(ArMe)		5 mL/mi	n					
	Const Col	+ Makeup:		0 mL/mi	n					
μE Su ((CD btract from 9 (Nothing Column (Column (Signal:) Compensation	i Curve #1 i Curve #2							

- 6) Aux Header 입력
 - 샘플링 밸브의 열을 가해주는 장치이며, 보통 사용하지 않지만 검출에 큰 영향이 없다면
 조정할 필요 없음

ALS	Valves	Columns	(D) Oven	Detectors	Aux Heaters	Events	<u>J.</u> Signals	Configuration	1,2, Counters	Readiness			
Them	nal Aux 1					Rate *C/min		Valu *C	e	ł	łold Time min		Run Time min
0				🕨 (Initial)					10	0		0	38.25
				*									
											Final	value w	I be extended by GC run time.

- 7) Configuration 입력
 - 자동으로 맞춰짐. 조정필요 없음.

ALS	()) Valves	Columns C	Dven	Detec	tors Aux Heaters	E	vents Signa	els Configuration	1,2, Counters	Readiness				
Miscellan	Viscellaneous Columns Modules ALS													
Pressure	e Units		V	alve Confi	guration									
Per			Γ		Valve Type		Name			Parameters				
Oven			•	1	Gas Sampling Valve	~	Valve #1			Loop Volume, mL: 1				
	Slow Fan			2	Not Installed	~	Valve #2							
				3	Not Installed	~	Valve #3							
				4	Not Installed	~	Valve #4							
5				5	Not Installed	~	Valve #5							
	Thermal A	.ux Туре		6	Not Installed	~	Valve #6							
► 1	Unknown			7	Multi-Position Valve	~	Valve #7			Step time, sec: 1; Number of Ports: 1-32; Inverted BCD				
2	Not Installe	ed		8	Not Installed	~	Valve #8							
3	Not Installe	ed	1				t ann an							

- ③ Method 설정이 끝나면 저장한다. 표준가스 method의 경우 ②의 1)에서 밸브포지션 #7이 2로 맞춰져 있다. 이름은 "항목_STD.M"로 저장한다. 시료의 method의 경우 ②의 1)에서 밸브포지션 #7이 2로 맞춘다. 이름은 "항목_SP.M"로 저장한다.
- Sample sequence 만드는 법
- ① 상단에 Sequence 클릭 \rightarrow Sequence table

-	nstrument	l (online):	Metho	& Run Co	trol		
Eile	BunControl	Instrument	Metho	Sequence	liew	Abort	Help
				\smile			

② Sequence table에서 다음을 지정한다.

- 1) Vial : 의미없음
- 2) Sample name : 항목이름(N₂O, SF₆ ...)
- method name : 앞서 만든 시료용 method(항목_SP.M) 혹은 표준가스용 method(항목_ STD.M)을 다운로드 함.
- 4) inj/vial : 1
- 5) sample type : sample (표준가스일 경우 STD)
- 6) save sequence tamplet as ※ 시료일 경우 "항목_SP.S", 표준가스일 경우 "항목_ STD.S" 로 저장

6.2.2.2 GC 6890의 생성/변경 방법

- 6890의 경우 총 2개의 파일(①시료용 method와 ②표준가스용 method 파일)을 생성한다.
- 시료용과 표준가스용은 기본적으로 모든 분석조건은 같지만, Valve position과 파일이름이
 다르다. 이는 아래에 서술되어 있다.
- 여기서는 Method 파일을 만드는 법을 서술한다.
- Sample method 만드는 법
- ① 바탕화면의 프로그램(이름 확인)을 선택한다

Menu에서 Sample Method를 선택 한다.

💾 Instrument I (onlin	ie): Method & Run Co	ntrol	- 🗆 ×
Eile BunControl Instrum	ent Method Sequence	View Abort Help	
Method and Run Control	● N20_MIN.M ●	N20.S 💽 Run Method	
	1 N20_MIN.M 2 METHAN.M 3 TEST M		
Ready	4 UECD,M 5 FIDECD,M	Method Sequence: N20_MIN.M NO.S	
🖪 Online Plot	§ N20STD,M 7 NPD_ECD.M	- X emStation	Status
back detector	§ ISTD_EX,M		Ready
Hz 700 -	9 DEFOLDGC.M 10 DEF_GC.M		
		and Bate	513.0

- ② Instrument에서 Edit Parameters에서 ECD의 Method 조건을 확인한다.
- 1) Valve position 결정
 - Valve 아이콘을 누르면 configure 하단에 valve#와 position 두 부분이 있다. 여기서 Valve#는 무조건 7로 지정하고, 하단의 Position을 바꾼다. 하단의 Position의 경우 시료 method의 경우 1로 표준가스 method의 경우 2로 지정한다.

Instrume	nt Edit	Valves:	(6890)						×
■ Oven Te Plot	Temperature (°C)	150 125 100 75 50 25 0	5		15	20	25	30	Time (min.)
Valve 1 2 3	Valves	e ampling onfigured		Oven		Signals Signals	Aux	Runtime	Options
4 5 6 7 8	Not co Not co Not co Multipo Not co	onfigured onfigured onfigured osition onfigured	Sy B	witching 1.0 sec Invert BCA CD Pos 2	sition:	oop V <u>o</u> l: oa <u>d</u> Time: nject Time: njet: Front	0.000	mL min min	Apply OK Cancel <u>H</u> elp

2) Runtime

Instrument	Edit Runtin	ne: (6890)				×
■ Oven Temp Plot	Temperature ("C) 125 125 100 75 50 25					
Injector Va			0 15	20	25 30	Time (min.)
<u>T</u> ime (min) 0.01	Speci <u>f</u> ier Valve ▼	Parameter	<u> </u>	<u>S</u> etpoint On	•	
0.01	Valve Valve	1	0 0	n ff		<u>Apply</u>
	<u>C</u> lear All	D <u>e</u> lete	<u>R</u> eplace	Add	<u>_</u>	Cancel <u>H</u> elp

3) Inlet 설정

- set point 는 실제(actual)과 같이 조정
- total flow도 실제(actual)과 같이 조정

Instrument Edit	Inlets: (6890)					×
Oven Temp Oven Temp	50 - 25 - 76 - 26 - 27	 15	20	25	30	Time (min.)
Front: EPC Purged Pa Heater I On Setpoint: Actual:	Columns acked Inlet 100 100	Detectors	للب Signals	Aux	C Runtime	Options
Image: Constant of the sector of the sec	psi psi 0.8 mL/mii 0.8 mL/mii				[Apply OK Cancel <u>H</u> elp

- 4) Column 설정
 - constant flow로 설정.

• Oven Temp 0 150 • Plot 0 10 20 30 40 Time (min.) • Plot • • • • • • • • • • • • • • • • • • •	Instrument Edit Columns: (68	390)					×
Plot 0 10 20 30 40 Time (min.) Injector Valves Inlets Our Participation Partindepartinde Partindeparticipation	■ Oven Temp () 150 and temp () 150 an					/	
Column (niector Mode: Inlets Columns Oven Oven Detectors Signals Aux Runtime Options Column (1) Mode: Const Flow Installed Column Inventory#: AB002 Installed Column Inventory#: AB002 Change Change Detector: Front Installed Column Inventory#: AB002 Change Change Detector: Front Model No: Restek Coutom Auumina F1 12ft Packed Column 250°C Max ArtCH4 Flow Flow Initial 20.0 0.00 47.50 Flow: 20.0 20.0 ml/min Ramp 2 0.00 0.00 47.50 Bamp 3 0.00 0.00 47.50 Hein Hein	Plot	10	2	0	30		40 Time (min.)
Column Mode: Const Flow Installed Column Change	Injector Valves Inlets Column	ns Oven	Detect)= ors Sigr) C	ne Options
Flow Burning Ml/min Run Time Apply Pressure: 54.72 psi Initial 20.0 0.00 47.50 Elow: 20.0 20.0 ml/min Ramp 1 0.00 0.00 47.50 Average cm/sec Post 0.00 0.00 47.50 47.50	Column Mode: Const Flow C 1 Inlet: Front Detector: Front Image: Const Flow Dutlet psi: Ambient	 Installed Inventor Manufact Model N Alumina Packed 	Column 19#: AB002 urer's Spe 10: Restek F1 12ft Column	2 cification: Coutom	s 250*C Ma	ах	<u>C</u> hange
Pressure: 54.72 psi Initial 20.0 0.00 47.50 Elow: 20.0 ml/min Ramp 1 0.00 0.00 0.00 Cancel Average cm/sec Post 0.00 0.00 47.50 DK	ArCH4 Flow Setpoint Actual	Flow	ml/min?	ml/min	Hold min	Run Time	Apply
Elow: 20.0 20.0 ml/min Ramp 2 0.00 0.00 Cancel Average cm/sec Ramp 3 0.00 0.00 0.00 47.50	Pressure: 54.72 psi	Initial Ramp 1	0.00	20.0	0.00	47.50	OK
Velocity: cm/sec Post 0.00 47.50	<u>Flow:</u> 20.0 ml/min	Ramp 2 Ramp 3	0.00	0.0	0.00		Cancel
	Velocity: cm/sec	Post	0.00	0.0	0.00	47.50	Help

5) oven (표 4와 5 확인)

Instrument E	Edit Ov	en: (689	90)					×
■ Oven Temp	- 150 (°C) - 100							
FIUL		ó	10		20	30	40	Time (min.)
Injector Valv) V-	lets Co		en Dete	Ctors Signals	∕∣⊘ Aux	Runtime	Options
0 <u>v</u> en					<u>Oven Config</u>	uration		
Setp	oint *C:	35			Maximu	m *C: 45	ō	
l⊽ On Ac	tual *C:	35			Equilibration	min:	2.00	
Oven Ramp	*C/min	Next *C	Hold min	Run Time	<u>⊢ C</u> ryo Configu	ration —		
Initial		35	28.00	28.00	Cryo On			
Ramp 1	30.00	170	15.00	47.50	E Quick Co	alina An		Apply
Ramp 2	0.00	0	0.00					
Ramp 3	0.00	0	0.00			, Ambient		UK
Ramp 4	0.00	0	0.00		Timeout I	Detection	0n	Consel
Ramp 5	0.00	0	0.00		mi	in		Lancel
Ramp 6	0.00	0	0.00	47.50	Fault Det	ection On		
Post Run		35	0.00	47.50				<u>H</u> elp

- 6) Detector
 - 온도설정 실제(actual)과 같에 적용
 - Make flow는 box의 체크표시 해제
 - ECD 선택

Instrument Edit	Detector	rs : (68 90))					×
■ Oven Temp	150 - 125 - 100 - 75 - 50 -							
Plot	25- 0	5	10	15	20	25	30	Time (min.)
Injector Valves	✓⊣j Inlets		Oven), Signals	IØ Aux	C Runtime	Options
Front: µECD Detec	ctor			1				
On		Actual	Setpoint				[Front 🔻
₩ H <u>e</u> ater, *C		350	350					
□ <u>M</u> akeup Flow:	N2	▼ 0.0	20.0					1
	makeup, me	·	20.0					Apply
It Licerometer							[OK
								Cancel
								<u>H</u> elp

7) Aux 설정

- 6방밸브의 온도설정. 조정필요 없음

Instrument Edit Aux	c: (6890)							×
Oven Temp Oven OvenTem Oven Temp Oven Temp Oven					/	/		
Plot 25 - 0	5		10	15	20	25	30	Time (min.)
Injector Valves Inle	ets Colum)	🕗 🗹	ignals	Ø Aux	© Runtime	Options
Aux Channel					-			
C Thermal Aux #1	Heater V On S	etpoint: Actual:	100 °C 100 °C		© Valve I © MSD © AED	Box		
C Pres Aux #3					C Unkno	wn		Apple
C Pres Aux #4					1	-		OPPO
C Pres Aux #5	Ramps Initial	*C/min	Next *C 100	Hold min 0.00	Run Time 36.50	: 	L	
Description:	Ramp 1	0.00	0	0.00				Cancel
	Ramp 3	0.00	0	0.00				<u>H</u> elp

③ Method 설정이 끝나면 저장한다. 표준가스 method의 경우 ②의 1)에서 밸브포지션 #7이 2로 맞춰져 있다. 이름은 "항목_STD.M"로 저장한다. 시료의 method의 경우 ②의 1)에서 밸브포지션 #7이 2로 맞춘다. 이름은 "항목_SP.M"로 저장한다.

6.3 Peak integration 및 calibration 방법

- 표준가스 및 시료의 Integration
- ① GC의 운영상태가 Run이 끝나고 Not Ready 혹은 Ready 상태가 되면 시작한다.
- ② 상단 메뉴의 View → Data Analysis → Integration → Integration event

- ③ 수정할 Method를 선택한다(항목_STD.M과 항목_SP.M 모두 선택하여 같은 조건을 적용함).
- ④ 좌측 아래박스에서 peak의 검출시간(retention time)의 범위를 지정하여 peak가 검출 되도록 한다.
 - 초기조건(Initial)의 slope sensitivity = peak 검출 감도, Peak width, hight, area = peak로 인지할 수 있는 가로, 세로, 넓이의 최소값, Shoulders = OFF 으로 지정.
 - Integration의 On과 OFF 에는 Peak가 검출될 수 있는 시간을 적어넣는다. 예를 들어 Peak가 4분에 검출된다면, On에는 3.2 OFF에는 4.5를 적어 Peak가 그 사이에 검출되면 그것을 인지하도록 한다.

2	1	-	Ĵ		0
			677 C	-	 7

Method Manual Events

Initial Events For All Signals:

Integration Events	Value
Tangent Skim Mode	Standard
Tail Peak Skim Height Ratio	0.00
Front Peak Skim Height Ratio	0.00
Skim Valley Ratio	20.00
Baseline Correction	Classical
Peak to Valley Ratio	500.00

Specific Events For Signal:

ECD Default -

Time	Integration Events	Value
Initial	Slope Sensitivity	3
Initial	Peak Width	0.5
Initial	Area Reject	1
Initial	Height Reject	10
Initial	Shoulders	OFF
0.318	Integration	OFF
3.251	Integration	ON
4.129	Integration	OFF
10.314	Integration	ON
12.444	Integration	OFF
17.993	Integration	ON
19.488	Integration	OFF

- ⑤ 왼쪽 상단에 체크박스를 누르고, 나가기를 누른다.
- ⑥ 이를 저장하면, 저장 이후의 모든 파일에 이 조건이 적용되어 Peak가 검출된다.
- ⑦ 이러한 Integration은 표준가스에 적용하여 정확한 peak가 검출되도록 하며, 하루에 한번씩 이를 적용하여 준다.
- 표준가스 Calibration
- ① 표준가스는 5시, 11시, 17시, 23시에 들어간다.
- ② 표준가스가 주입되고 난 후 GC의 운영상태가 Run이 끝나고 Not Ready 혹은 Ready 상태가 되면 시작한다.
- ③ 표준가스를 새것으로 교체한 후에는 다음과 같이 시작한다
 - 상단 메뉴의 View → Data Analysis → Calibration → New calibration

- 수정할 표준가스 Method를 선택(항목_STD.M) → Automatic setup 선택
 ※ 만일, 표준가스 주입 직후에 한다면 current method 선택

alibrate: Instrument 1	al	Sample Name /	Method Name	Sample Type	Man	Cal Level	Sample Info	Sample Am 1
	al 1	AIR	N20_NEW.M	Sample	-			0 0
New Calibration Table								
Calibration Table								
O Manual Setup	on M	Signal						
Automatic Setup Level:	prt: Sł	vort 🕒	<u>∆</u> <u>⊰</u> <u>⊗</u>					
Default Amount: 0.000) 🔳	3 🔍 🧠 😽	📩 🖓 🖓 🔚	~ Over	view	- 🌸 💷		
	(201512	SP_N20 2015-12-31 09	-00-05W20000000.0)					
Calibration Mode				414				
Calculate Signals Separately				1				
				11				
				11				

 - 수정할 표준가스의 RT와 Area값은 분석된 표준가스의 결과값으로 넣고, Amount에는 표준가스 실린더의 인증값을 넣는다.

 값을 지정한 후 OK 버튼을 누르면 Calibration table 팝업창이 뜨며, 팝업창의 OK 버튼을 누른다.

- Report → Print Report를 누른다

- 값이 적용된 것을 확인한다.

eport								
0	2	4 6	8	10	12	14	16	min
	Exte	rnal Standard	Report					
Sorted By	:	Retention	Time					
Calib. Data Mod	ified :	12/31/2015	9:56:40 AM					
Multiplier:		: 1.0	0000					
Dilution:		: 1.0	0000					
Use Multiplier	& Dilution	Factor with I:	STDs					
[min]	[Hz*s]		[ppb]					
7.474 1 BB	2237.676	76 1.47117e-1	329.20000					
Totals .			220 20000					
IOCAIS .			525.20000		J			
1 Warnings or E	rrors :							
Warning : Calib	ration warn	ings (see cal.	ibration tab.	le listing	6			
rument 1 12/31/	2015 9:57:1	7 AM 201512				Pe	ge 1 of 1	
soft XPS Document Writer of	n XPSPort		a. [[.		-			

④ 기존에 있던 표준가스를 재설정 하려면 다음과 같이 한다.

- 상단 메뉴의 View \rightarrow Data Analysis \rightarrow Calibration \rightarrow Recalibration
- 이후의 과정은 ③과 같다.
- 이 작업은 되도록 매일 해주어 표준가스의 값을 정확히 지정해 주는 작업이 필요하다.

6.4 자료저장 방법

GC 측정자료의 자료처리 통계프로그램 구동 및 관리를 위해 저장 폴더를 매월 1일 변경 하는 작업을 실시한다. 메탄 측정 프로그램을 이용한 저장 폴더 변경방법을 예로 들어 설명 하였다.

GC 6890의 경우

① GC 측정 프로그램을 선택 - RunControl에서 Sample Info...을 선택한다.

Щь С	H4 (online): №	lethod	& Run C	ontrol			
<u>F</u> ile	<u>RunControl</u> Ins	trument	<u>M</u> ethod	<u>S</u> equence	<u>V</u> iew	<u>A</u> bort	<u>H</u> elp
M	Run <u>M</u> ethod		F5	AM.M 🚽		DEF_GC.	; 🛨
000	Sample <u>I</u> nfo,					mal	
	Run <u>S</u> equence <u>P</u> ause Sequer R <u>e</u> sume Sequ	ence	F6	n <u>5.0</u>		" 000 ()	Meth
	Stop Run/Injec	:t/Seque	nce F8				
	front detector						

 ② Sample Info 창에서 CH₄를 Subdirectory 창에 년월(yyyymm, 예; 201506)을 입력하고, 확인창이 뜨면 OK누른다.

Sample Info: CH4		>
Operator Name: Data File		
_	Prefix Signal <u>1</u> : SIG1	Counter: 1549
Subdirectory: 201105	Signal 2: SIG2	0001
Path: C:\HPCHEM\1\DATA\		

Signal 1:- Counter 박스에 "0000" 네자리를 입력하고 다시 OK한다.

Sample Info: CH4		×
Operator Name: Data File		
	Prefix Signal <u>1</u> : SIG1	Counter: 0000
Subdirectory: 201106	Signal 2: SIG2	0001
Path: C:\HPCHEM\1\DATA\		

③ 이후 탐색기 C:\HPCHEM\1\DATA 밑에 201106 폴더가 자동 생성되는 것을 확인함.

④ 이후에 생성되는 자료는 C:₩HPCHEM₩1₩DATA₩201106₩폴더 안에 저장이 된다.

GC 7890의 경우

① GC 측정 프로그램을 선택 - Sequence에서 Sequence parameter를 선택한다.

- ② Sequence parameter에서 Path는 C:₩Chem32₩1₩DATA₩로지정
- ③ Subdirectory 는 연도와 월 Ex) 2015년 12월 자료면, 201512
- ④ Prefix는 항목이름 (N2O, CFCs 등)과 Counter은 0000000
- ⑤ Operator Name은 ③과 동일하게 지정한 후 OK 버튼 누른다
- ④ 이후에 생성되는 자료는 C:₩Chem32₩1₩DATA₩201512 폴더 안에 저장이 된다.

uence Parameters Sequence Output					
Data File		Operator Name			
Path: C:\Chem32\1\DATA\	*	201512			
Subdirectory: 201512		201012			
🔿 Auto Prefix	Counter	ChemStore			
Prefix/Counter N20	0000000				
27 L		Transfer Settings			
Part of method to run		Shutdown			
According to Runtime Checklist	~	Post-Sequence Command/Macro			
Use Sequence Table Information		×			
Bar Code Reader		Fraction Information			
Use In Sequence					
On a bar code mismatch	 Inject anyway Don't inject 	Fraction Start Location:			
equence Comment:					

6.5 GC의 ON/OFF 방법

- 장비 ON 방법
- ① 운반가스인 P-5 (CH₄ 5%/Ar 95%)가스를 연결한다.
 - ※ P-5 가스는 연구동 1층 가스실에 있음으로 정기적으로 체크하여 가스량을 확인한다. 자세한 관리법은 〈부록〉 참고.
- ② GC를 켠다.
- ③ GC와 연결된 컴퓨터(PC)를 켠다.
- ④ 바탕화면에 Instrument 1 Onilne 클릭, GC 프로그램을 시작한다.
- ⑤ 바탕화면 Scheduler Scheduler 클릭하고 스케줄러의 내용을 확인한다.
- ⑥ 스케줄러 저장(상단의 디스크모양의 버튼을 누른다)
- ⑦ 스케줄러에서 정한 시간이 되면 자동적으로 Run이 된다.
- 장비 OFF 방법
- ① Instrument 〉 Edit Parameters 측정 장비 조건을 변경한다.
- ② Detectors 온도를 내린다. Heater 체크박스의 체크를 없애고 Apply.

Instrument Edit	Detecto	ors: (6890	1)					×
■ Oven Temp (°C) Temperature	150 125 100 75 50							
Plot	0	5	10	15	20	25	30	Time (min.)
Injector Valves	✓ = j Inlets		× () Oven	Detectors	Signals	I Aux	C Runtime	Options
Front: µECD Dete	ctor			1				
On ✓ Heater, *C Makeup Flow:	N2	Actual	Setpoint 350 0.5					Front 💌
Const Col +	Makeup, ml	L/min:	0.5					Apply
Electrometer								OK
								Cancel
								<u>H</u> elp

③ Oven 온도를 내린다. 체크박스의 체크를 없애고 Apply.

Ins	trument E	Edit Ov	en: (689	90)					×
• 0	ven Temp	Temperature (°C) 150 100 20 20 20 20 20							
	Plot	1	o	5	10 1	5 20	25	30	Time (min.)
	jector Valv) 🖌	ets Co	lumns C		tors Signals	Aux	C Runtime	Options
	© Ven I On Setp Ac	oint *C: tual *C:	35			Oven Config Maximu Equilibration	uration m *C: 220 n min: 3	0 3.00	
	Oven Ramp	*C/min	Next *C	Hold min	Run Time	_ <u>C</u> ryo Configu	iration ——		
	Initial		35	5.50	5.50	🗖 Cryo On			
	Ramp 1	5.00	45	6.50	14.00	Guick Co	olina On		Apply
	Ramp 2 5.00 Ramp 3 20.00		70	3.50	0 22.50				
			150	10.00	36.50	*C, Ambient			UK
	Ramp 4	0.00	0	0.00		Timeout	Detection (In	Course 1
	Ramp 5	0.00	0	0.00		п	in		Lancer
	Ramp 6	0.00	0	0.00		E Fault De	tection On	1	
	Post Run		32	0.00	36.50				Help

④ Aux에 가서 체크를 제거한다.

⑤ 온도가 전부 내려가면 정면에 있는 GC 장비 전원을 눌러서 종료 시킨다.

6.6 농축시스템 운영절차서

- 제조사 : 주식회사 케이엔알
- 모델명 : APK2950A-G (구 APK8200)

6.6.1 시스템의 원리

육불화황(SF₆)농축시스템은 극저온 농축법을 적용하여 시료채취, 농축, 탈착 및 주입과정을 연속으로 진행하게 된다. 외부에 직접 시료도입라인을 설치하여 연결하거나 외부로부터 연결된 통합된 시료라인이 있을 경우 중간에 시스템의 시료도입라인을 연결하여 시료를 채취할 수 있다. 또한 과거에 주로 사용된 액체질소 등을 대체할 수 있는 냉매순환방식의 국소냉각장치 (특허 10-1066418)를 장착함으로써 소모성 냉매 사용에 대한 불편함을 해소하고 안정적인 저온농축법을 적용하였다. 특히 육불화황과 같이 끊는점이 매우 낮은 물질도 효과적으로 농축할 수 있는 영하 80도 이하의 국소냉각장치에 흡착제가 충진된 저온농축관을 장착함으로써 농축 효율을 높인 시스템이다. 농축된 시료는 어떠한 이동이 없이 닫힌계를 형성하여 일정온도 (200도 이상)로 가열하여 탈착(Closed Loop Desorption)하고 분석기로 주입하여 분석할 수 있는 시스템이다.

6.6.1.1 시료채취

시료는 sampling pump와 mass flow controller(MFC)를 이용하여 일정유량으로 일정시간 동안 채취된다. 이 때 수분의 제거가 중요한 요소로서 수분이 계속하여 유입될 경우 농축관의 흡착제를 자주 교체하거나 분석재현성에 영향이 있을 수 있다. 따라서 별도의 수분제거장치가 설치되지 않은 곳에서는 수분제거를 위해 Nafion dryer가 설치되기도 한다. Nafion Dryer는 원형관 속에 작은 원형관이 있는 형태로 내부관은 반투과성 여과막 재질, 외부관은 stainlesssteel로 구성된다. 내부관으로 시료를 통과시키고 외부로는 건조공기를 시료반대방향으로 통과시켜 발생하는 농도차에 의해 시료 중 수분을 건조공기로 이동시켜 제거할 수 있는 구조로 되어 있다.

대기 시료뿐만 아니라 별도의 표준물질들을 연결하여 순차적 또는 임의적으로 분석할 수 있도록 multiposition valve(6 position)를 장착하여 제어할 수 있다.

51

Multiposition Valve

(~4L/min) (Min. 6 position)

-Mass flow controller (0~200 mL/min) - Nafion drier

6.6.1.2 농축, 탈착 및 주입

수분이 제거된 대기시료는 국소냉각 probe에 장착된 농축관에 모이게 된다. 이때 농축관 (stainless steel, 1/4 inch OD, 110~150mm length)에 충진되는 흡착제(Tenax TA, Molecularsieve 5A, chromosob 등)는 대상물질의 특성에 맞는 종류를 선택하여 충진할 수 있다. 이 probe에 냉각블럭을 장착한 코일히터를 삽입하여 최종적으로 농축관을 저온으로 유지시켜 농축시키고 코일히터를 가열함으로써 대상물질을 탈착한다. 이때 농축관 내부의 가스흐름이 없는 닫힌계를 형성(closed loop desorption)하여 저속(10 ℃/min)으로 가열함으써 대상물질이 탈착되어 농축관 내부에 존재한다. 탈착이 끝나면 유로변경용 밸브를 동작함으로써 자연적으로 분석기로 주입된다. VOCs 성분의 안정적인 이송을 위해서 이송라인은 150℃ 이상의 온도로 항상 유지하여 연속적인 분석에도 메모리 효과가 없이 데이터의 신뢰성을 확보할 수 있다.

6.6.2 측정기기 구성

농축시스템은 시스템을 제어하는 제어부, 유량조절 및 전원부, 시료채취 및 유로전환부, 냉각부로 구성되어 있다.

6.6.2.1 시스템제어 및 데이터처리

시스템을 제어하기 위한 APK Control 프로그램이 설치되며, 각종 분석기 운영 및 데이터 수집 프로그램을 추가적으로 설치할 수 있다. APK Control 프로그램은 분석된 데이터의 추출 및 전송, 1 point calibration 기능을 포함하고 있다. 또한 시스템을 운영하는 방법인 스케줄을 작성하여 연속적으로 반복 운영하도록 설정할 수 있다.

6.6.2.2 유량조절 및 전원부

퍼지가스(Purge Flow) 및 주입(Injection Flow)용 가스의 유량을 조절할 수 있으며 시스템 의 전원과 농축을 위한 냉동기의 전원을 분리하여 구성하였다. 이때 가스 유량조절부는 연동 하는 분석기에 따라 사용유무의 선택이 가능하다.

Strip & Purge Flow	라인의 퍼지 및 저온농축관의 dry purge를 위한 유량조절부로 헬륨 또는 질소 가스의 양을 조절한다.
Injection Flow	탈착된 대상물질을 분석기로 보내주기 위한 유량조절부로 헬륨 또는 질소 가스의 양을 조절한다.
Main Power	시스템의 메인전원스위치로 시스템 PC는 별도의 전원이 연결
Cooler Power	농축 probe의 냉각을 위한 냉동기의 전원스위치

6.6.2.3 시료채취 및 유로전환부

Valve Oven은 200도 이하(최대 210도를 초과하지 않도록 설정한다.)로 상시 가열함에 따라 모든 시료이동라인의 오염을 최소화 할 수 있으며, 두 개의 전환밸브(Stainless steel, 6-port 2-position)를 사용함으로써 이송유로를 최소화 하였다. 또한 오븐 내에는 농축 probe 및 농축관이 장착된다. 농축관을 교체하고자 할 때는 오븐온도를 낮추고 진행하는 것이 바람직하다.

Valve Oven (Right fig. : Open cover)

- Valve Oven : Continuous Temp. Control (Max. 200 °C)
- Gas flow switching: 6 port-2 position Valve (Air actuator type)
- ➤ Gas Line : Silcotreated tubing (1/16 inch)

6.6.2.4 냉각부

생각부에 위치하는 냉동기는 외장형과 내장형이 있다. 외장형은 주로 외부의 농축시스템과 연계하여 구성하며, 내장형은 본 시스템의 내부에 장착될 수 있도록 제작되었다. 냉동기는 냉매를 순환하는 방식을 채택하여 1차 및 2차 압축을 통해 -100도까지 냉각된 냉매를 순환 시키는 방식으로 냉각 probe의 농축관을 냉각시킬 수 있도록 구성되어 있다.

< Patent No. : 10-1066418 (2011, Korea) >

6.6.3 농축시스템의 운영

시스템의 운영은 APK Control 프로그램으로 진행된다.

6.6.3.1 작동준비

● APK Control 프로그램

① 프로그램의 설치

제공된 CD에서 APK Control 폴더를 찾아 이 폴더 내에 있는 setup.exe를 클릭하여 안내 하는 순서대로 프로그램을 설치한다(하단 그림 참조). APK Control이라는 폴더에는 APK Control.exe 파일이 생성된다. 제어 프로그램을 실행시키기 위해서는 이 파일을 더블 클릭 하거나 윈도우 시작프로그램에 생성된 APK Control 실행아이콘을 클릭하여 프로그램을 실행 시킬 수 있다.

〈프로그램의 실행〉

② 프로그램의 실행

초기 프로그램을 실행시키면 아래의 그림과 같은 화면이 나타나며 최초 설치 시 접속번호 입력 창에 3001'을 입력한다. 이때 접속메뉴의 로그인을 클릭하면 암호를 묻는 창이 나타나며, 암호(초기: 1234)를 입력하면 초기화면이 실행된다. 입력암호는 임의로 바꿔 입력할 수 있다.

주의: 암호를 분실 시 접속이 되지 않으며, PC 상의 시스템파일을 포함한 APK Control 프로그램 관련 파일을 모두 지워야 다시 설치할 수 있다.

Here and the second sec	APK Control v2.2.904	
	접속(<u>X</u>) 보기(<u>V</u>) 그래프(<u>G</u>) 원도:	₽(₩) 도움말(出)
	로그인	
	시작	
	정지	
	종료(※)	
ja 10 20-02 🖝 ja		
1		
(1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999)	로그인 (K)	
	로그인 🛛	
jiha note 🖬	로그인 🔀 안향(P): 알향변경 [
	로그인 🔀 암호(P): <u>암호변경</u>	
	로그인 암호(P): 암호변경	
	로그인 X 암호(만): 암호변경 확인 취소	

③ 프로그램 환경설정

메뉴 바의 "보기" 탭의 "시스템설정"을 선택한다. 기기의 통신 및 설정 창이 나타나며, 통신이 연결된 상태는 '초록색'으로 표시되고 그렇지 않은 경우는 '노란색'으로 표시된다. 시스템에 설치된 항목(controller, valve1 등)은 반드시 초록색으로 표시되어야 정상적으로 동작한다.

1) 시스템 통신포트설정

신 포트 설정	장치별 환경 설정		통신 포트 설정		Plot & 저장
192, 168, 0, 230 14700 192, 168, 0, 230 14701 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14706 192, 168, 0, 230 14706 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14705 192, 168, 0, 230 14715 192, 168, 0, 230 14715 192, 168, 0, 230 14716 192 1	신 포트 설정 ※포트는 서로 Controller	중복되지 않도록 설정하세요. Valve1	Valve2	Valve3	3 [≈]
GC 정보 음신 1 GC 정보 음신 2 1	Valve5 192,168, 0,230 14700 192,168, 0,230 14708	MFC 192, 168, 0, 230 14701 MFC 192, 168, 0, 230 14712	DMFC1 192,168, 0 ,230 14705 192,168, 0 ,230 14702	192,168, 0 ,230 14706 DMFC2 192,168, 0 ,250 14715	DMFC3 192,168, 0 ,230 14707 DMFC3 192,168, 0 ,230 14716
	GC 정보 송신 1	GC 정보 송신 2 19 💌			

- 통신포트 설정 전 컴퓨터의 IP 주소를 설정해야 한다. 초기 설정을 변경하지 않고 사용 가능하며, 부득이 변경해야할 경우 현장상황에 맞게 조정한다.
 - IP Address

컴퓨터	192.168.0.10
APK2950A	192.168.0.230

- 고유 번호 : 14700 부터 14716까지 부여할 수 있습니다(Controller(14700), Valve1(14701), DMFC1(14702)은 기본 설정치).
- GC 데이터를 외부 DB 또는 데이터 로거에 전송하기 위한 컴퓨터 통신포트를 설정하는 곳이다.
- 설정이 완료되면 '적용'을 클릭하고 프로그램을 재부팅한다.

● 운영 스케줄의 설정

시스템의 운영방법을 결정하여 순차적으로 진행되도록 하는 것을 스케줄이라고 한다. 동작 시 모든 파라미터들은 스케줄에 설정된 조건대로 우선 실행된다. 스케줄의 하단부에 반복횟수 (cycle, 9999까지 입력 가능)를 입력한다. 단, All Open, Set To 1st Seg로 설정되어야 정상 동작이 가능하다.

Seg No	1	2	3	4	5	6	1			10	11	- 12	15	- 11	15
	표기	버지	84	07	문작	주입1	주입2	071	072	CI 7 3	0	비지	-	02	물착
	0.1	2	12	0.1	3	0.1	2.9	9	0.4	0.4	0.1	2	12	0.1	3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F/H Trap	-100	-100	-100	-100	280	280	280	-100	-100	-100	-100	-100	-100	-100	280
Valve	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
T.Line	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
S. Valve	OFF	OFF	🗷 ON	OFF	OFF	OFF	OFF		OFF	OFF	OFF	OFF	V ON		
I. Valve	OFF	OFF	OFF	OFF	OFF	✓ ON	Y ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF
SOL3	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF
SOL4	OFF	OFF	OFF		OFF		OFF				OFF	OFF	OFF	OFF	
SOL5	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF
SOL6	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF		OFF	OF
Start	OFF	OFF	OFF		OFF	I ON	OFF		OFF	OFF	OFF	OFF	OFF	OFF	
N.Pump	OFF	S ON	⊻ ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Y ON	✓ ON	OFF	OF
sChrom	OFF	OFF	OFF	OFF	OFF	I ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF		OF
Relay4	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
Relay5	OFF	OFF	OFF		OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OF
Relay6	OFF	OFF					OFF		OFF	OFF	OFF	OFF			OFF
Valve 1	1	- 4	- 4	1	1	1	1	1	1	1	1	- 4	- 4	1	1
				(procession)			-	-	-	-	-			and the second s	1
						_		-				_		e. 1	4
Tet:	150.0 mi	0	Curren	: 0			Cycle	ALL O	Den	- 5	et To 1st	Seo	-	B	다른 이

〈운영 스케줄 설정 창〉

스케줄의 노란색 부분의 체크(√)된 항목이 시스템의 운영에 필요한 소요부분품이다. 체크 된 항목을 확인 해야한다. 스케줄의 시간 및 운영방법을 수정할 때는 반드시 다른 이름으로 저장하고 수정해야 기본 스케줄이 변경되지 않는다. 설치된 시스템은 30분 간격으로 1개의 데이터를 생성하도록 설정되어 있다. 각 단계(Seg No)별도 사용자가 확인할 수 있는 명칭을 입력할 수 있으며, 단계별 진행 시간도 변경하여 입력할 수 있다. 이 때 반드시 확인해야할 사항은 마지막 단계 이후에는 시간이 "0"으로 표시되어야 반복진행시 초기부터 진행된다.

초기 시스템 설치 시 현장 상황과 사용자의 요구를 반영하여 작성된 스케줄을 참고하고 부득이 수정하고자 할 경우 다른 이름이로 저장하고 수정하도록 한다.

6.6.3.2 측정기기 작동

작동 준비가 완료 되었으면 APK Contol 프로그램 상단메뉴의 "접속"탭의 "분석시작"을 클릭하여 작동시킨다. 작동시 붉은 색으로 진행단계가 표시되고 하단에 1개 Cycle의 총 운영 시간과 진행시간, Cycle 횟수가 표시된다.

59

6.6.4 측정기기 관리

6.6.4.1 일일점검

- ALARM 메세지의 출력 여부 점검.
- 누수 및 누기 등의 이상 유무 점검.
- 운영가스(질소, 수소, 에어 등)의 상태확인.
- 분석기의 signal 값을 확인.

6.6.4.2 주간점검

- 분석기의 온도 control 점검.
- 모니터 출력상태 점검 및 시료 및 가스 유입상태 점검.
- 가스 부족여부 점검 및 시료유입라인 점검.

6.6.4.3 월간점검

- 검·교정 등 정도검사
- 시료 채취관 및 도입관 Cleaning
- 시료 채취라인 및 저온농축부 결로 점검

6.6.4.4 기타

- 시스템(APK2950a와 Gas Chromatograph) 클리닝
- ① 시스템 클리닝 조건
 - 각 화합물에 대한 Peak의 분리가 되지 않을 때: 컬럼 점검
 - Peak의 baseline이 안정되지 않을 때: Cold Trap 및 분석기 점검

- 시스템 운영 시 'Purge Gas Flow'의 압력게이지가 5~10이상일 때: 농축관 점검

- 시료채취가 되지 않을 때: 펌프 및 MFC 점검

- ② 시스템 클리닝 방법
 - 클리닝용 스케줄을 열어 반복실행: 농축관 및 유로 클리닝
 - 시료채취 라인의 분리 및 세척: 재장착 후 2~3회 시스템 운영
- 주요 부품의 교체(Recommend)
- ① 교체주기
 - 저온농축 트랩(Cold Trap): 2개월에 1회(연 6회)
 - 시료채취펌프: 연 1회
- ② 저온농축트랩의 교체 및 활성화

- 전면부 Cooler Power 스위치를 Off 하고 냉각부가 실온으로 될 때까지 약 30분간 대기한다.
- 덮개의 상하 볼트 4개를 제거하고 가열된 부분을 냉각시키기 위해 약 10분간 커버를 열어둔다.
- 렌치를 이용하여 ②번의 1/4 inch 너트 양쪽을 풀어낸다.
- 안쪽에 있는 농축관을 좌측으로 뽑아낸다.
- 새로운 트랩을 좌측에서 우측으로 집어 넣는다.
- 1/4 inch 너트를 조여 농축관이 빠지지 않도록 한다.
- 커버를 닫고 Cooler Power 스위치를 ON 하여 밸브오븐 온도가 평형이 될 수 있도록
 약 30분간 대기한다.
- 시스템을 1~2회 운영시켜 저온농축관을 활성화 시킨다.

● 주요부품 및 교체주기

품명	사양 및 규격	제조사	교체주기
시스템 제어용 컴퓨터	win XP sp3	Benecom	이상발견시
시스템제어용 메인보드 & 통신보드	TCP to Serial Communication, 6–I/O port, Heating Control	KnR	이상발견시
Two Position Valve	6 port, 1/16", E-type rotor, Air Actuator	VICI	이상발견시
Multi Position Valve	6 position, 1/8", Micro-electrical type	VICI	이상발견시
Mass Flow Controller (with Digital Pressure Gage)	Manual Type 0~150ml/min for 40psi,1/8"	VICI	이상발견시
시료채취펌프	6L/min	YLKTECH	1회/연
Transfer Line	room temp \sim 200 $^\circ \!\! \mathbb{C}$, 1/32" Silcosteel	KnR	이상발견시
냉동기 with Cold Probe	냉매순환식, Cold Porbe -80℃이하 OD 20mm	KnR	이상발견시
SMPS	12VDC, 24VDC, 5VDC	U &H	이상발견시
Cold Trap	1/4 inch OD SUS	KnR	6회/년
Solenoid Valve	24VDC, for Air Actuator	한길	이상발견시
3-Way Switching Valve	1/8", Stainless Steel	승림특수금속	이상발견시
Coil &Cartridge Heater	200Watt & 75Watt	KnR	이상발견시
Mass Flow Controller	200 mL for Air		이상발견시

Trouble Shooting Guide

Trouble 형태	원인	조치방법	자체보수 가능여부	교체소모품	
시료추출시 퍼지가스 압력 게이지 압력이 10이상 상승	저온농축트랩의 막힘/결로	저온농축트랩 교체	가능	저온농축트랩	
스케줄상의 온도설정 값으로 제어가 안됨	메인보드이상	 분석기와 시료이송라인 분리후 스케줄 재실행하여 이상유무 판단 	가능	없음.	
		-이상시 메인보드 점검			
시료가 채취되지 않고 MFC 유량이 표시되지 않음	펌프이상 MFC 이상	펌프동작 및 MFC 확인 및 교체	불가능	없음	
	메인보드의 제어이상으로 농축트랩가열이 안됨	실행중인 스케줄을 멈추고, 다시 실행하여 데이터 점검	가능	dо	
탈착된 시료가 주입않됨 (데이터 확인 시)		이상시 메인보드 점검	불가능		
	농축트랩 이상으로 농축이 안됨	- 실행중인 스케줄을 멈추고, 다시 실행하여 데이터 점검 - 이상시 농축트랩 교체	가능	저온농축트랩	
바탕시험에서 대상	시스템오염 (밸브/가스라인 /시료라인 등)	- 연속으로 바탕시험 진행 (스케줄연속진행)	가능	없음	
굴절이 심굴인세 이하도 내려가지 않음		- 지속적인이상으로 판단 될 경우 시스템정지 및 점검	불가능	없음	

7. 자료수집방법 및 처리방법

7.1 자료수집방법

- 각 관측소에서 COMIS 가상서버로 보내는 프로그램 기후과학국 통합서버에 별도 보관(폴더명: 자료수집 6-①) 각 관측소의 PC 마다 프로그램이 개별로 존재함
- ② COMIS 가상서버에서 기후변화감시서버로 보내는 프로그램 기후과학국 통합서버에 별도 보관(파일명: 자료수집 6-②)

7.2 자료처리방법

- 기후변화감시서버에 쌓여있는 데이터를 불러오는 작업
- MySQL 클릭

Connect to MySQL Server I	ndance		
Stored Connection:		•	
Server Host:		Port 3306	
Upemane:			
Password			
Default Schema:			

- Server host : 공유하지 않음
- Username : 공유하지 않음
- Password : 공유하지 않음
- Default Schema : 공유하지 않음

MySQL 쿼리 예시

- 오더창에 SQL 쿼리 입력

예시 1) 온실가스의 평균 자료

- select mid(date, 1, xxxx), site, avg(CO2), avg(CH4), sqrt(avg(co2*co2)-avg(co2)* avg(co2)),sqrt(avg(ch4*ch4)-avg(ch4)*avg(ch4)),count(*) from crds_raw_2014 group by mid(date, 1, xxxx), site
- ※ xxxx: 연평균시 숫자 4, 월평균시 숫자 6, 일평균시 숫자 8, 시간평균시 숫자 10, 1분 평균 숫자 12 입력
- ※ crds_raw_2014: 테이블 명 (테이블 명 문서 상단에 있음)

예시 2) CRDS의 1시간 평균 자료 중 안면도 관측소의 수분농도가 0.02%이하인 값

select mid(date, 1, xxxx), site, avg(CO2), avg(CH4), sqrt(avg(co2*co2)-avg(co2)* avg(co2)),sqrt(avg(ch4*ch4)-avg(ch4)*avg(ch4)),count(*) from crds_raw_2014 where h2o(0,02 and site='132' group by mid(date, 1, xxxx), site

※ site: 132 = 안면도, 013 =고산, 101 = 울릉도, 096 = 독도, 678 = 태하

예시 3) CRDS의 1시간 평균 자료 중 임의의 기간동안 수분농도가 0.02%이하인 값

- select mid(date, 1, xxxx), site, avg(CO2), avg(CH4), sqrt(avg(co2*co2)-avg(co2)* avg(co2)),sqrt(avg(ch4*ch4)-avg(ch4)*avg(ch4)),count(*) from crds_raw_2014 where h2o(0.02 and date between '20141208' and '20141231' group by mid(date, 1, xxxx), site

예시 4) GC-FID의 CH4 검색 (기타 GC에서 측정되는 항목도 동일함)

select mid(ch4_date, 1, 10), site='132', avg(ch4), sqrt (avg(ch4*ch4) - avg(ch4)*avg(ch4))
 from ch4_raw_1999

● MySQL 의 쿼리문 입력 → 왼쪽 Excute(녹색) 버튼 클릭

MySQL Query Browser	- kgawo@172.2	0.157.172:3306 / Window He	kgawo In	100			and the second second		
back Next Refresh	1		r					Execute - Stop	
🕈 🥝 Resultset 1								Schemata Bookmarks History	
💡 date	💡 site	ult6	state	kind	conce	unit	flag	2	
19990101000032	132	ULT6	Measure	C1: CD2	371.4	vpm	999999999999	5	
19990101000107	132	ULT6	Measure	C1: CD2	371.4	vpm	999999999999	- ch4_raw_2014	
19990101000142	132	ULT6	Measure	C1: CD2	371.4	vpm	999999999999	ch4 raw day	
19990101000218	132	ULT6	Measure	C1: CD2	371.4	vpm	9999999999999	 cn4_raw_bay ch4_raw_hour cn2_10m_10_1997 	
19990101000253	132	ULT6	Measure	C1: CO2	371.4	vpm	9999999999999		
19990101000328	132	ULT6	Measure	C1: CO2	371.4	vpm	3999999999999	▶ co2 10m L0 1998	
19990101000403	132	ULT6	Measure	C1: CO2	371.4	vpm	9999999999999	co2 10m L0 1999	

● 데이터 출력시(파일 〉 Export result 〉 Export as CVS file) 저장

File	Edit View Query Script To	ols	Window H	elp		
	New Instance Connection Reconnect					
	New Query Tab New Script Tab Open Query Open Script Reopen	ult6 ULT6 ULT6 ULT6 ULT6	state Measure Measure Measure			
	Save Save As	ULT6 ULT6	Measure Measure Measure			
	Export Resultset	Export As CSV File				
	Close Tab Change Default Schema Page Setup	Export As HTML File Export As XML File Export As Excel File Export As PLIST File				
	Print to PDF Print		ULT6 ULT6	Measure Measure		
_	Exit	ULT6	Measure			

● 온실가스의 L1 자료

- ① CRDS L0 : 자료 중 H2O <0.02% 인것의 1시간 평균값 (예시 2)
- ② GC L0 : 1시간평균값 (예시 1)
- ③ L1: L0중 각 관측소의 Logbook을 이용하여 이상 자료를 제거
- ④ L2: Metlab을 이용하여 배경대기 산출 함
8. WMO CCL과 비교실험을 위한 NOAA 플라스크 샘플링

8.1 시료 채취전

용어

PSU: Portable Sampling Unit, 휴대용 시료 채취기(그림 1.(좌)) 플라스크: Flask, 시료를 채취하는 유리병(그림 1.(우))

- 시료채취하기 전 주의 사항
- PSU에 플라스크 설치할 때: 햇빛에 직접 노출되는 것을 피하여 실내에서 수행되어야 하며 실외에서 수행되어야 할 경우라면, 그늘을 만들어 직접적인 노출을 피할 수 있도록 한다.
- ② 전류량 확인: 9 A 이하 일 때는 샘플링 실행이 안되기 때문에 빨간색 상자 전원 스위치 위치 확인하고 측정하기 전에는 항상 OFF에 위치시킨다.
- ③ SHERPA Model 70 CHARGE : PSU가 충전이 필요할 경우 주황색 나타난다. 이런 경우 반드시 충전하고 시작한다.
- ④ 플라스크의 PSU와 연결시 주입구 밸브 확인 : 플라스크의 밸브가 잠겨있는지 확인한다. 플라스크와 PSU의 연결 시 플라스크의 꼭지가 부러질 수 있으므로 테플론 연결관을 너무 조이지 않도록 주의 한다.

그림 1. PSU 의 내부 모습(좌) 와 유리플라스크(우)

8.2 PSU 안에 플라스크 설치하기

필요 부품: 플라스크, 건조한 휴지(Kimwipes) / 소요시간: 5분

- ① 플라스크 두 개를 꺼내어 플라스크 번호와 날짜를 야장에 적고 PSU안에 놓는다
- ② 플라스크 긴 주입구 붉은색 고무 덥개를 제거하고 주입구를 건조한 휴지로 닦는다
- ③ PSU 안에 있던 연결관 고무 덮개를 제거하고 깨끗한지 확인한다.
- ④ 플라스크는 두 개의 플라스크 중 높은 숫자를 PSU의 밖으로 오게 넣고 연결한다.
- ⑤ PSU의 pump 라고 쓰인 테플론 연결관과 안쪽 플라스크의 긴 주둥이와 연결하고, Return 이라고 쓰인 연결관과 바깥쪽 플라스크의 짧은 주둥이를 연결한다. 안쪽 플라스크의 짧은 주둥이와 바깥쪽 플라스크의 긴 주둥이를 서로 연결한다.
 - ※ 주의 모든 연결분들이 단단히 연결되었는지 확인한다. 항상 플라스크의 긴 주둥이는 공기가 들어오는 입구이며, 짧은 주둥이는 공기가 나가는 출구이다.
- ⑥ 흡입구 라인 선반을 접은 후 시료채취 케이스를 닫고 고리를 건다.
 - ※ 주의 시료 채취 장소로 PSU를 이동하는 동안 플라스크들이 깨지지 않도록 안전한지 확인한다. 필요 부품: 플라스크, 건조한 휴지(Kimwipes) / 소요시간: 5분

8.3 시료채취장소에 PSU 설치하기

- ① 타워 주변의 적절한 장소를 찾아서 PSU 를 놓는다.
- ② 타워에 설치되어 있는 주입구 라인 끝의 피팅으로 부터 마개를 제거한다.
- ③ PSU 흡입구 라인에 있는 quick-connect 피팅 고무마개를 제거한다(고무마개는 타워 라인에 있는 마개의 임시 뚜껑으로 사용한다.).
- ④ PSU 흡입구 라인의 quick-connect 피팅을 타워의 quick-connect 피팅에 끼운다.

8.4 시료채취하기

- 플라스크의 밸브를 모두 연다. O-ring이 완전히 밑으로 떨어질 때까지 손잡이를 반시계 방향으로 돌린다. 밸브를 완전히 여는 것이 중요하다(다른 한 손으로 플라스크 줄기를 잡아야한다.).
- ② 전원을 켠다. LED들과 밸브들이 시험 시퀀스를 진행한다. ※ 10초 소요
- ③ Sample Mode 버튼을 누른다. 밴트 시키는 동안 로타미터를 확인한다(6~8 L/min, 2분소요).
- ④ 시료 채취가 시작하면 로타미터가 5~6 L/min 확인 후 케이스를 닫는다(10분소요).
- ⑤ 시료 채취하는 동안 시트 작성한다(시간, 날짜).
- ⑥ 시료 채취가 완료되면 PSU 케이스를 열어 LED 점등확인 기록(10분후 GOOD 확인)
- ⑦ 플라스크 밸브를 다음 순서대로 잠근다. PUMP 연결관→RETURN 연결관→그 다음은 순서 무관
- ⑧ PSU 전원을 끈다. PSU 흡입구 라인을 분리하고, 덮개를 다시 끼우고 PSU 흡입구 라인 받침대를 접는다. PSU 케이스를 접는다.

8.5 시료내려놓기

- ① 플라스크는 실내에서 빼내어 빛에 노출되지 않도록 한다.
- ② 휴지로 붉은색 고무덮개를 닦아 플라스크 끝에 끼운다.
- ③ 시료 시트에 플라스크 번호와 날짜, 시간이 맞게 기록 확인하고 시료 시트를 선적박스에 넣는다. [주의] 플라스크 박스를 닫기 전에 덮개를 붉은색이 앞으로 오도록 닫고, 완벽하게 밀어준다.
- ④ 선적 박스 스폼지 무늬 참조 깨끗한 쪽 사용 안함. % 채취 플라스크

8.6 건조모드

- ① PSU에 전원 공급장치를 꽂는다. PSU 케이스를 열고 전원 스위치를 켠다. [일시적으로 모든 LED 불이 켜짐]
- ② 건조 모드(Dry Mode) 버튼을 누른다. [펌프 소리와 노란색 건조 모드 불이 켜진다.] 30분

③ 건조 모드를 마치면 전원 스위치는 끄고 배터리 충전을 위해 전원 공급 장치는 그대로 둔다.

8.7 야장적기

야장은 반드시 샘플링 한 사람의 이름을 적는다. 사람에 의한 오차를 확인하기 위해서 이다. 시간은 KST(한국시간)인지 UTC(그리니치표준시 인지를 명시한다.

부록. 각 장비별 점검사항

• CRDS의 점검사항

- 1) CDRS의 CO₂이 480 ppm 혹은 CH₄의 값이 2800 ppb를 30분 이상의 값을 나타내면 다이아프램 펌프의 이상을 의심하고 다이아프램을 교체한다(3.2).
- 2) CDRS의 H₂O값이 0.02%가 1시간 이상 지속적으로 넘어가면 제습장치의 이상이 있는지 확인한다(3.3).
- 3) CRDS의 창에 error 메시지가 뜨는지 확인한다(4.2).
- 4) CRDS의 자료가 각 디렉토리에 잘 쌓이고 있는지 확인한다(4.2).
- 5) CRDS의 검교정은 2주마다 4개의 표준가스로 진행하며 검교정 결과는 반드시 보관 한다(4.3).

• GC의 점검사항

- 6) 스케줄러에 맞게 GC가 운영되고 있는지 확인한다(5.2).
- 7) GC의 peak가 잘 detection 되었는지 확인하고 표준가스 및 시료의 Integration을 해준다(5.3).
- 8) 표준가스의 peak가 잘 detection 되고 있는지 확인하고, 주변 환경에 따라 peak의 area와 RT의 변동이 생길 수 있으므로 표준가스 주입 후 적어도 하루에 한번 이상 recalibration 작업을 해준다(5.3).
- 9) GC의 측정자료가 각 폴더에 잘 쌓이고 있는지 확인한다(5.4).

• 표준가스의 점검사항

- 10) 표준가스 장부가 실제 주입되고 있는 가스와 맞는지 확인하고 장부를 잘 보관한다.
- 11) 표준가스는 항상 NOAA scale (WMO의 표준)에 맞춰지도록 관리한다.

• 로그북

12) 로그북은 위의 모든 과정을 포함해야 하며 이상 자료의 시작과 끝을 시간단위로 명시하여야 한다.

기후변화감시 기술노트 발간 목록

2014년도

- 1. 기후변화감시 기술노트 2014-01 : 통합 지구대기화학관측(IGACO)의 오존 및 자외복사 이행 계획
- 2. 기후변화감시 기술노트 2014-02 : GC-µECD를 활용한 대기 농도 수준의 SF6 분석 가이드라인
- 3. 기후변화감시 기술노트 2014-03 : 건조 공기 포집 및 안정도 평가를 위한 가이드라인
- 4. 기후변화감시 기술노트 2014-04 : 강수화학 국제비교실험 참가방법 및 결과
- 5. 기후변화감시 기술노트 2014-05 : WMO 지구대기감시(GAW) 전략계획(2012-2015) : WMO GAW 전략계획 (2008-2015) 보강
- 6. 기후변화감시 기술노트 2014-06 : 표준 에어로졸 샘플링 시스템
- 7. 기후변화감시 기술노트 2014-07 : 총자외선지수 산출방법 및 프로그램
- 8. 기후변화감시 기술노트 2014-08 : 강수화학 측정자료의 분석 절차

2015년도

- 1. 기후변화감시 기술노트 2015-01 : 오존층에 관한 질문과 답변 20가지 : 2014년판
- 2. 기후변화감시 기술노트 2015-02 : WMO 육불화황 세계표준센터의 3차 표준가스 제조 방법
- 3. 기후변화감시 기술노트 2015-03 : Analytical Methods for Atmospheric SF₆ Using GC-µECD (WMO/GAW Report NO. 222)
- 4. 기후변화감시 기술노트 2015-04 : 강수화학(대기침적) 측정 및 분석 매뉴얼
- 5. 기후변화감시 기술노트 2015-05 : 대기조성의 측정

2016년도

1. 기후변화감시 기술노트 2016-01 : 온실가스 관측업무 매뉴얼

 기상청
 서울특별시 동작구 여의대방로16길 61 기후변화감시과

 대표전화: 02-2181-0647
 www.climate.go.kr

