22 Sep. 2015, KRISS, KOREA

Standards for Greenhouse gas Monitoring

Jeongsoon Lee Korea Research Institute of Standards and Science

Contents

1. Background

2. GG standards for monitoring

- 3. Ongoing activity
- 4. Conclusion

Greenhouse Gases Concentration

First step for the Climate Change Science

- To better understand the physical, chemical, biological and geological processes and the interactions that governs the climate system
 - More accurate and continuous real time observation
 - Spatial scales: global to local
 - Temporal scales: weeks to millions of years
 - To collect data as evidences and predict CC

MRA between WMO and BIPM

Measurement Challenges in Global Observation Systems for Climate Change Monitoring: *Traceability, Stability and Uncertainty*

- Three institutes designated by the WMO can now participate fully in the MRA
- A new set of opportunities for collaboration and for the NMIs to support global atmospheric monitoring

Cooperation between WMO & BIPM

- Greenhouse Gases effect to Global Warming and should be monitored
- Global Atmosphere Watch Program needs precise and stable standard reference gas mixtures
- WMO designates Central Calibration Lab (CCL) for developing accurate and precise references. CCL participates the key comparison program.
- NMIs establish Primary methods for accurate measurement and support CCLs

WMO GAW QA system

• According to the WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008 -2015 (GAW report 172) WMO-GAW have paid attention to systematically improve quality of data observed at the global or regional monitoring site.

• To produce good measurement data, it is essential to ensure traceability over the world as well as to establish a controlled quality system.

- For the implementation of Quality system recommended by GAW program
 - Detect small trends (through DQO)
 - Detect small spatial gradients
 - Ensure long-term stability of observations
 - Data comparability (on the same scale)

WMO primary standards (CO₂)

Preparation:

- Manometric technique for CO₂, Established in CCL (NOAA), Unc.(1σ): ~ 0.07 ppm*
- Now, Gravimetric Method; CH₄, N₂O, CFC, PFC * Zhao, C. L. and P. P. Tans, (2006), Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air,

Dissemination

- Transfer Standard: Air or Modified Air
- NDIR Calibration with Manometric Value by (1σ): 0.02 ppm for CO₂

Primary Reference Material

- Purity assessment
 - Molecular weights of source gases (isotopic ratio)
 - Impurity analysis based on final concentration
- Accurate mixing (Gravimetry)
- Internal consistency by comparison (one set at a time)
- Stability test (6 months for short term)
- Verification through KC (including uncertainty)
- Register to BIPM CMC (as NMI)
- Validation of life time by periodical reproduction
- Expensive ? support industry & government (by national body)

KRISS activity on GG monitoring

- International cooperation bet. BIPM and WMO
- International comparisons
 - Global average of CO₂, CH₄, N₂O, SF₆, CFCs, HFCs
 - International comparison results
- <u>KMA and KRISS cooperation</u>
 - Mutual cooperation since 1998
 - Continuous greenhouse monitoring at Anmyeon & Ulleung in Korea
 - Air achieve and halocarbon measurement

Traceability and Harmonization

Key Comparisons for the demonstration of equivalency between NMI's in their analytical capability to certify the composition of gas mixtures (analytical comparison) and their capability to prepare SI-traceable gas measurement standards (preparative comparison)

International Comparison

- International comparison activity
 - coordination : BIPM CCQM
 - BIPM (Bureau international des Weight and measures)
 - CCQM (Consultative Committee for Amount of Substance) Metrology in Chemistry, Working group (NMI)
 - Regional activity: APMP/TCQM
- Quality system : Peer Reviewed by 5 years
 - management, technology
 - registration of BIPM CMC List : KRISS CRM # 130 (2005)
 - Service (measurement capability)

CCQM Key Comparisons

- 2002 CCQM-P41 Greenhouse gases
- 2004 CCQM K15 CF4 and SF6 emission level(coordination by KRISS)
- 2005 CCQM K51 CO in nitrogen (5 µmol/mol)
- 2007 CCQM K52 CO2 ambient level
- 2009 CCQM K68 N2O in artificial air, ambient level(coordination by KRISS)
- 2012 CCQM K82 CH4, ambient level
- 2012 CCQM K83 CFCs and HFCs, ambient level (+ EMPA, SIO)
- 2012 CCQM K84 CO in air, ambient level(coordination by KRISS)

International comparison (CCQM-K52, 2008)

Coordinating Lab: VSL (Netherland)

Substance: Carbon dioxide in Synthetic Air

International comparison (CCQM-P41, 2003)

→ Coordinating Lab: NMi-VSL (Netherland) → Substance: CH₄ in Synthetic Air

Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale (1.24 % higher than before)

: Dlugokencky, E. J. et. al., (2005), JGR-Atmospheres, 110

International comparison (CCQM-K82, 2014)

Coordinating Lab: BIPM, 2014 Substance: CH₄ in Synthetic Air

International comparison (CCQM-K68, 2010)

- Coordinating Lab: KRISS
- Substance: Nitrous oxide 320 nmol/mol in Synthetic Air

International comparison (CCQM-K15, 2003)

Coordinating Lab: KRISS

→ Substance: SF₆ & CF₄ hundred µmol/mol level

International comparison (CCQM-K83, 2013)

✦ Coordinating Lab: NIST

✤ Substance: ambient level Halocarbons in real air

KRISS

Bilateral comparison (NOAA & KRISS, 2014)

Coordinating Lab: KRISS

♦ Substance: SF₆ ambient level in air

 \rightarrow As a result of the comparison, NOAA scale was updated to a new 2014 scale.

Standard reference gas mixtures

Standard reference gas mixtures

substan ce	Preparation method	Impurity analysis	Range of Certified Values in Reference Materials	Uncertainty (k=2) [U=2*u=2*]	Dissemin ation	Validity period /cylinder	ref
CO ₂	Gravimetry/ 3 step	CO ₂ , N ₂ , O ₂ , Ar	above 10 μ mol/mol	0.06 at 380 μ mol/mol	Air /Air modified	2 year/Al*, 29.5L	CCQM-K3, 52 CCQM- K120
CH ₄	Gravimetry/ 4 step	CH ₄ , N ₂ , O ₂ , Ar	above 100 nmol/mol	0.0005 at 1.9 μ mol/mol	Air /Air modified	2 year/Al*, 29.5L	CCQM-P41, K82
N₂O CO	Gravimetry/ 5 step	N ₂ O, N ₂ , O ₂	above 50 nmol/mol above 100 nmol/mol	0.2 at 320 nmol/mol 1.0 at 350 nmol/mol	Air /Air modified	2 year/Al*, 29.5L	CCQM-K68 CCQM-K84
SF ₆ NF ₃	Gravimetry/ 6 step Gravimetry/ 6 step	SF_{6}, N_{2}, O_{2} NF_{3}, N_{2}, O_{2}	above 6 pmol/mol for SF ₆ above 1 nmol/mol for NF ₃	0.04 at 6 pmol/mol SF ₆ 0.01 at 1 nmol/mol NF ₃	Air /Air modified	2 year/Al*, 29.5L	CCQM-K15, Paper preparation
PFCs	Gravimetry/ 6 step	CF ₄ (C ₂ F ₆), N ₂ , O ₂	above 10 pmol/mol for CF_4 above 100 μ mol/mol for C_2F_6	0.5 at 100 pmol/mol CF ₄	Air /Air modified	2 year/Al*, 29.5L	CCQM-K15
HFCs	Gravimetry	HFC23, N ₂ , O ₂	above 30 pmol/mol for HFC23	2 at 100 pmol/mol for HFC	Air /Air modified	2 year/Al*, 29.5L	CCQM-K83
CFCs HCFCs	Gravimetry/ 4~5 step	CFC 11,12,113, N ₂ , O ₂	μ mol/mol~50 pmol/mol for CFC 11,12,113	0.5 at 100 pmol/mol for CFC	Air /Air modified	2 year/AI*, 29.5L	CCQM-K83

> traceable to SI, uncertainty level with in WMO recommendation, AI*: AI Barrel polished (Luxfer or Catrina), \star Additionally δ 13C/CO₂, δ 13C/CH₄,

KRISS

Ongoing research on GG measurement

- Isotope analysis and isotope ratio analysis
- <u>Remote measurement of atmospheric species</u>
 - Ground remote observation for tracking source and sink
 - Global networking on carbon observation
- Aerosol measurement
- Emission measurement
 - Energy
 - Agriculture
 - Industry emission

Closing remark

- <u>Significant contributions have been made</u> by several NMIs to the standards used to underpin the evidence base for global GG monitoring.
- <u>International collaboration is essential</u> to monitor and predict CC and will greatly increase leverage in the future
 - WMO "Global Atmosphere Watch", now part of the CIPM-MRA
 - Global networking on GG observation
- <u>Future challenges</u> will be
 - Greater focus on standards in real matrices ("whole air")
 - Understanding of data (and uncertainties) in a way that is compatible with scales with <u>long-term stability and accuracy</u>