Continuing efforts on greenhouse gases monitoring and modeling in India

Yogesh K. Tiwari

Indian Institute of Tropical Meteorology (IITM), Pune, India

(Ministry of Earth Sciences, Govt. of India)

CO₂ emissions from India

CO₂ emissions due to fossil fuel and cement production over South Asia during 1990-2009 (Source: Boden et al,2011)

Le Quéré et al 2013; Global Carbon Project (GCP) 2013

>Uncertainty of estimated emissions of CO_2 over above Asian region are larger due to the lack of sufficient CO_2 monitoring (Schuck et al., 2010; Peylin et al., 2012; Patra et al, 2013).

> Towards a better understanding of CO_2 transport pathways, CO_2 sources and sinks over Indian subcontinent, need dense network and high quality CO_2 monitoring supplemented by a robust modeling techniques (Bhattacharya et al., 2009; Tiwari et al., 2011, 2014; Ravi et al., 2014).

Major fluxes of CO2, CH4, N2O and related species in the South Asian region

(Source: Patra et al, 2013)

CO₂ from space (satellite)

>AIRS CO₂ -Source (NASA)

➢Zonal average(65°E-100°E) of satellite retrieved over India is shows monotonous increase at each latitude band.

Satellite retrievals is shows almost 24ppm of CO_2 increase with an average growth rate of 2 ppm/yr during 2003-2011 over Indian region.

>Zonal average satellite de-trended CO_2 shows clear seasonality from year to year.

zonal mean of CO2 observed over India

(zonal average) Detrended CO₂

Greenhouse gases monitoring techniques we use

1)Discrete
2) In-situ

Greenhouse gases monitoring platforms we work

1)Surface
2)Aircraft
3)Ship

1) Surface sites:

Sinhagad (SNG) – Yogesh Tiwari (2009 – continue)

Cape Rama (CRI) – Marcel (1993-2002, 2009-2013)

Darjeeling (DJI) – Anita, Bristol Univ (2010- 2013)

Surface monitoring site SNG, Pune, India

Methodology and analysis techniques

Met sensors and Intet pump

Flask sampling unit

Continuous in-situ measurements of CO2, CH4, H2O at Sinhagad (SNG) site

[CH4] = 2.057 PPM
[H2O] = 12527.6 PPM
[CO2] = 413.8 PPM
[CH4_DRY] = 2.083 PPM
[CO2_DRY] = 419.1 PPM
1157.15 Mill:1 andkeet Air 1157.15 Mill:1 andkeet Air 1157.15 Mill:1 andkeet Air 107.15 Mill:1 andk

CO₂ sources at the observation sites based on Lagrangian modeling

Although the particles are transported from the western part of Asia in January, they are primarily transported by the northeasterly winds within the planetary boundary layer (PBL) over India as they reach SNG. Impact of marine layer CO_2 fluxes is rather significant on the receptor at SNG.

Ref : Yogesh K.Tiwari, V. Valsala, R. K. Vellore, and K. Ravi Kumar (2013): Effectiveness of surface monitoring stations in capturing regional CO₂ emissions over India. Climate Research, 56, 121-129.

Cape Rama

During January, higher surface sensitivity is seen over the central and east coast of India as well as over the foothills of the Himalayas. In contrast, the surface sensitivity magnitudes are significant over the central Arabian Sea in July.

The concentrations can be more sensitive to local terrestrial (marine/oceanic) fluxes in January (July).

Ref : Yogesh K.Tiwari, V. Valsala, R. K. Vellore, and K. Ravi Kumar (2013): Effectiveness of surface monitoring stations in capturing regional CO₂ emissions over India. Climate Research, 56, 121-129.

Seasonal cycle of NDVI (Normalized Difference Vegetation Index) and Rainfall at SNG and CRI

>NDVI shows a minimum value at SNG to represent bare soil during April to May, which contrasts the maximum in October to represent the loss of vegetation canopy.

Although the NDVI magnitude at CRI is larger, the month-to-month variability in the vegetation cover is found to be weaker at CRI as compared to SNG. This suggests that crop harvesting in the vicinity of SNG appears to play a role ahead of the summer monsoon season.

The annual cycle of vegetation at both sites follows the annual cycle of rainfall.

Results:

GHGs observations at Sinhagad (SNG) monitoring site (2011-2013)

Climatological mean of Observed CH4 & CO2 concentrations.

Comparison with northern and Southern hemisphere global Monitoring sites

CH₄ observations and comparisons with model simulation at three Observational sites in India

Annual cycle of CO₂ (ppm) superimposed with annual cycle of Rainfall (mm) over Cape Rama based on the data for 1993-2002

(Ref.: Yogesh K. Tiwari, J. V. Revadekar, K. Ravi Kumar, 2013, Variations in atmospheric Carbon Dioxide and its association with rainfall and vegetation over India. *Atmospheric Environment,* Vol.68 (2013), pp 45-51, DOI: 10.1016/j.atmosenv.2012.11.040)

Annual cycle of all-India monthly mean Vegetation index (NDVI) during drought and flood years over the period 1981–2000

(Ref.: J. V. Revadekar, **Yogesh K. Tiwari**, K. Ravi Kumar, 2012, Impact of climate variability on NDVI over Indian region during1 **.** *International Journal of Remote Sensing*, Vol.33, No.22, 2012, 132-7150, DOI: 10.1080/01431161.2012.697642)

CO₂ variability at SNG and CRI observing sites

There is a smaller CO_2 variability (8–10 ppm) during summer monsoon months (JJAS) compared to values greater than 15 ppm for the remainder of the year. This is in part due to higher vegetation cover in these months due to intermittent precipitation spells. The observational record also indicated larger variances seen at SNG during post-monsoon months (later than September) than seen at CRI.

Yogesh K. Tiwari, Ramesh K. Vellore, **K Ravi Kumar**, Marcel Vander Schoot, and Chun-Ho Cho (2014) Influence of monsoons on atmospheric CO₂ spatial variability and ground-based monitoring over India. *Science of the Total Environment* 490 (2014) 570–578.

Carbon flux Measurement Netwrok in India (FLUXNET)

-IITM operates 20° Six sites for Carbon flux Measurements In India

Carbon flux measurement (fluxnet):

• Multi-level instrumentation

- 1. Eddy Covariance (EC) systems at two levels consisting of fast-response 3D sonic anemometer-thermometer, closed-path CO_2 -H₂O analyzer and data logger
- 2. soil temperature sensor at 5 levels
- 3. heat flux plates at 2 levels
- 4. multi-component weather sensors at 4 levels
- 5. infra-red thermometer
- 6. Photosynthetic Active Radiation (PAR) quantum sensor
- 7. net radiometer

2) Airborne GHGs monitoring: 2010, 2014, 2015 CRDS instrument

Instrumentation

•Cavity Ring Down Spectroscopy (CRDS) for measuring CO2, CH4, CO, H2O concentrations in the air

•CRDS is a linear optical absorption technique for measuring trace levels of a target compound in air

•Linear optical absorption technique is a process of passing light through a gas sample and measuring the amount of light absorbed.

Calibrations.....

Beechcraft King Air B200: Sept 2014 at Varanasi

Crew	2 pilots + 2 scientists
Gross weight	>12,500 lbs
Payload	>1000 lbs
Cabin Volume	>6 m ³
Minimum operating altitude	500-1000 ft AMSL
Minimum operating altitude	25000 to 28000 ft AMSL
Cruising Speed	230 - 260 knots
Sampling Speed	80-120 m/s
Ascent rate	>800 ft /min
Endurance	4 - 5 hours
Range	2000 km minimum

Other Instruments:

•CCN counter •Hot-Wire Liquid Water Sensor (LWC-100) •TWC probe •Air Data Probe (winds, temperature, RH) •PILS with Auto Sampler •Photoacoustic Extinctiometer (PAX) – aerosol scattering and absorption •CRDS gas analyzer (CO2, CH4, H2O, CO)

Credits: Thara P.

Calibration and post-processing:

• Three standards, from WMO certified lab NOAA ESRL USA, are used to calibrate observations

- Calibration is done at the ground before airborne observations
- •Output data are stored at every two second interval
- Post-processing is done with the help of co-located met data from other instruments

Vertical profile during a flight

2015

CAIPEE

Nasik

Mumbai Mumbai

Pune

Baramati Phaltan Mandra-Radar Mahabaleswar 225 km Solapur274 km

240 km

Karad

Ratnagin

246 km Kolhapur

20

Latur

Relationship between in-situ CO pollution and Cloud droplet number concentration over Arabian sea and inland

Cloud droplet CDP_Conc (#/cm^3)

Credits: Thara P.

Source: Carl Brenninkmeijer, Max Planck

Fig. 8. Latitudinal distributions of CH4 (a), SF₆ (b), and N₂O (c) for April–October 2008. For May–September a Gaussian has been fit to the data. Solid lines indicate background levels determined from the CARIBIC measurements in April and October for SF₆ and from the Mauna Loa Observatory for CH4 and N₂O. All samples for which CH4 mixing ratios are above the reference background are indicated by closed symbols, open symbols denote samples with lower CH₄ mixing ratios. The vertical dashed lines mark the integration limits used to calculate the increase in the monsoon plume.

Schuck et al., 2010, ACP

3) GHGs monitoring at the ship deck : Land-ocean contrast of surface CO_2

CruiseTrack and mean CO₂ (ppm; shaded) of the cruise period from Carbon Tracker model

The spatial pattern of mean CO_2 from the CarbonTracker simulations averaged from the start to the end of the cruise period.

➤The sharp land-ocean contrast in atmospheric CO₂ at the surface (1000 hPa) can be seen in the CarbonTracker simulations.

Ref: K. Ravi Kumar., Y. K. Tiwari, V. Valsala, and R. Murtugudde (2014); On understanding of land-ocean contrast of atmospheric CO₂ over Bay of Bengal: A case study during 2009 summer monsoon (Environmental Science and Pollution Research)

Comparison of observations and model simulations over Bay of Bengal

The land –ocean contrast is observed in the observations of CO_2 over BoB. such land-ocean contrast in CO_2 prevails during the same period of every year.

Ref: K. Ravi Kumar., Y. K. Tiwari, V. Valsala, and R. Murtugudde (2014); On understanding of land-ocean contrast of atmospheric CO₂ over Bay of Bengal: A case study during 2009 summer monsoon (Environmental Science and Pollution Research)

Ref: K. Ravi Kumar., Y. K. Tiwari, V. Valsala, and R. Murtugudde (2014); On understanding of land-ocean contrast of atmospheric CO₂ over Bay of Bengal: A case study during 2009 summer monsoon (Environmental Science and Pollution Research)

KMA team visited IITM Pune India:

• KMA scientists and engineers visited IITM Gas Chromatograph (GC) lab during 19-23 Sept.2015

•Worked on CO2 and CH4 monitoring at the IITM GC lab

•Monitoring of Sulfur Hexafluoride (SF6) and Nitrous Oxide (N2O) at Gas Chromatograph (GC) lab at the IITM Pune.

• Collaborations on GHG's monitoring in India

Inter-comparison of CH4 calibration standards:

Korea (KMA) - India (IITM) - Japan (JMA)

In the intercomparison project, two cylinders containing air of known CH4 mole fractions are circulated among above participants

New observational sites – starting early next year

70*

80*

90"

Thank You !!