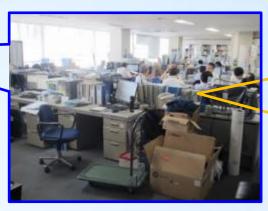


The JMA activities and network for GHG observation and recent topics

Yoki Mori^{1*},

はれるん

- Y. Esaki¹, A. Takizawa¹, S. Takatsuji¹, T. Okuda¹,
- K. Dehara¹, S. Hosokawa¹, T. Kawasaki¹, H. Koide¹,
 - H. Matsueda², Y. Sawa², K. Tsuboi², Y. Niwa²
 - *yoki_mori@met.kishou.go.jp
 - 1. Japan Meteorological Agency (JMA), Tokyo, Japan
 - 2. Meteorological Research Institute (MRI), Ibaraki, Japan



About us

JMA Headquarter, Tokyo

Atmospheric Environment Division

- WDCGG
- WCC-CH4
- RCC-Total O3
- QA/SAC

GAW Central Facilities

- Greenhouse gas observation unit
- Aerosol observation unit

:

My job (an example)

Operation of GAW Station

Aircraft observation

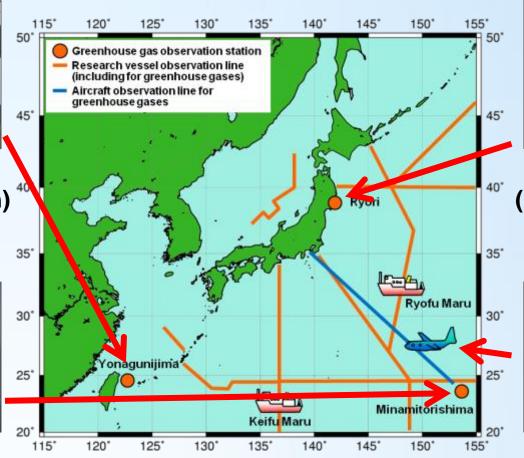
Standard gas calibration

Quality check of observed data

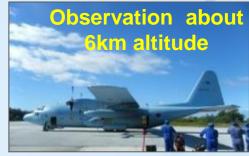
Today's Topics

- JMA observation network and activities for atmospheric Greenhouse gases
 - ➤ Collaboration with Japanese research groups

GHG observation network



Yonagunijima (GAW regional station) Since 1997



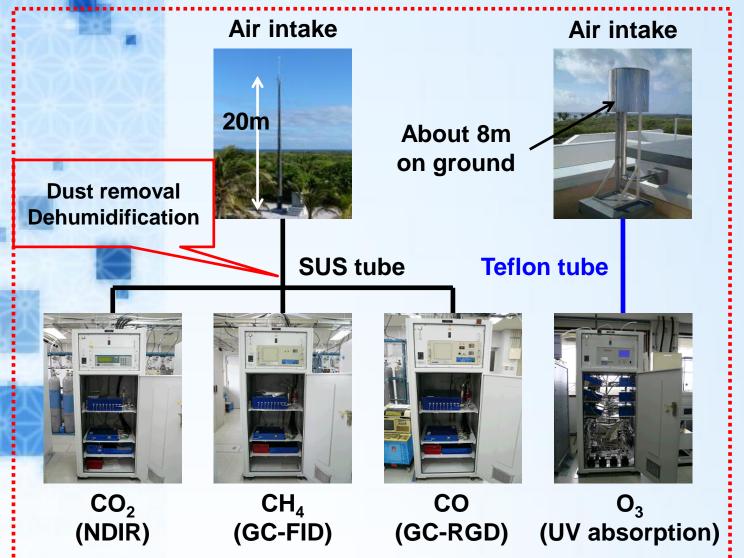
(GAW global station)
Since 1993

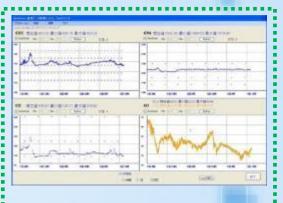
Minamitorishima

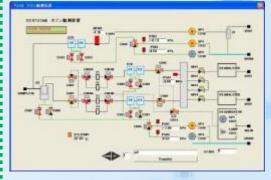
Ryori (GAW regional station) Since 1987

Cargo aircraft (C-130H)

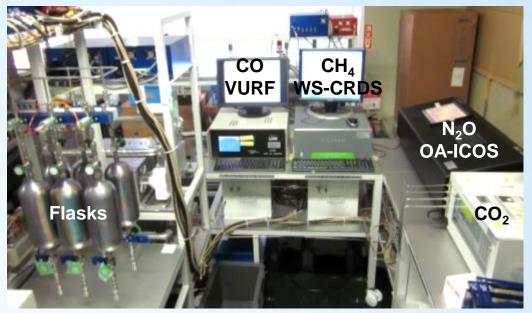
Collaboration with


Japan Air Self-Defense Force


Since 2011



Observation systems

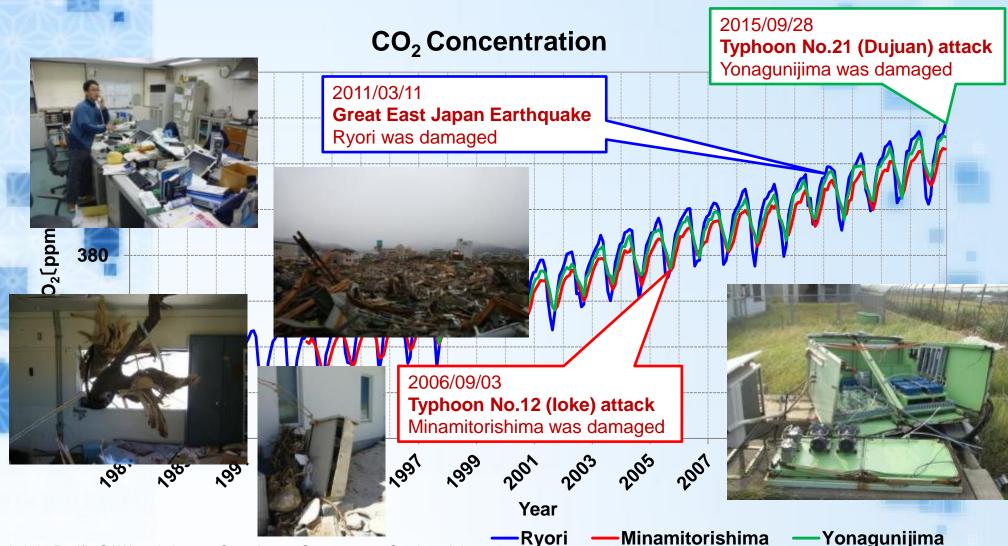


Remote monitoring &
Remote control
from HQ

Precision and standard gas scale

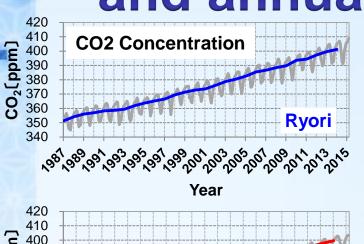
Parameter	Analyzer (Method)	Precision	Standard Gas scale
CO ₂	LI-COR LI-7000 (NDIR)	≦0.02ppm	WMO X2007
CH₄	Round Science RCG-1 (GC-FID)	≦2ppb	WMO X 2004
СО	Round Science TRA-1 (GC-RGD)	≦2ppb	WMO CO X2004
O_3	Thermo Fisher Scientific 49i (UV absorption)	≦1ppb	NIST

High-precision measuring system W

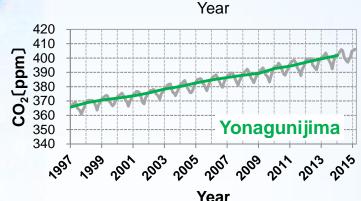


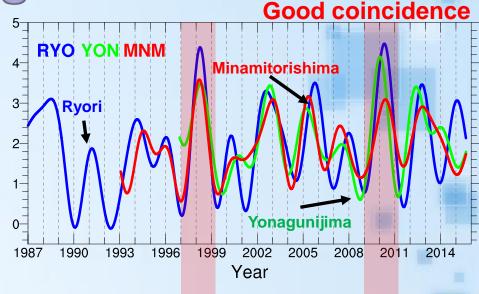
Analyzer (Method)	Parameter	Precision	Standard Gas scale
Picarro G2301 (WS-CRDS)	CH ₄ CO ₂	≦0.26ppb ≦0.014ppm	WMO X 2004 WMO X2007
Los Gatos Research DLT100 (OA-ICOS)	N₂O CO	≦0.07ppb ≦0.08ppb	NOAA 2006A WMO CO X2004
LI-COR LI-7000 (NDIR)	CO ₂	≦0.064ppm	WMO X2007
Aero-Laser AL5002 (VURF)	СО	≦0.28ppb	WMO CO X2004

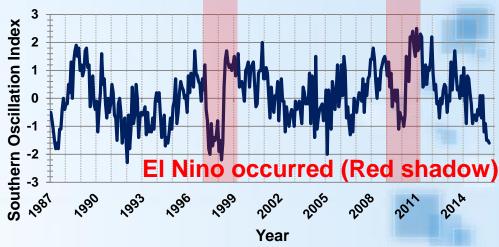
Natural disasters during Long-term observation

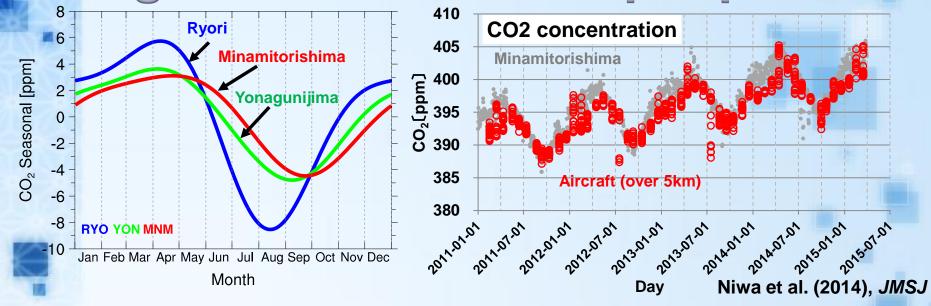





Observed CO₂ Concentration and annual growth rate


CO₂ Growth rate [ppm yr

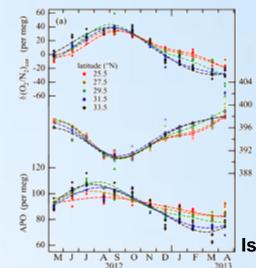




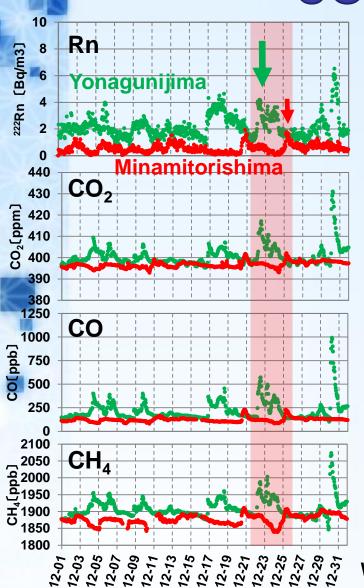
http://www.data.jma.go.jp/gmd/cpd/db/elnino/index/soi.html

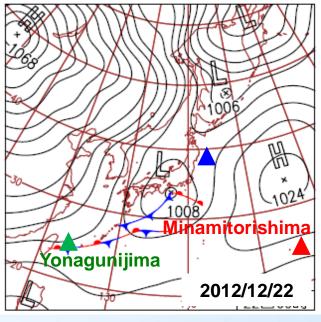
Averaged CO₂ cycle and comparing with ground and mid-troposphere

- The difference of seasonal variation rate reflects the difference of biosphere.
- The phase shift indicates that the air convection carries high CO₂ concentration to mid-troposphere from ground.


The new findings are obtained but it is required furthermore observations to elucidate the carbon cycle.

Collaboration at Minamitorishima


Ishidoya et al. (2014), SOLA


Measurement Laboratory	Parameter	Sampling Type	
Meteorological Research Institute (MRI(JMA's facility))	H ₂ , ²²² Rn	Continuous	
National Institute for EnvironmenStudies (NIES)	δO ₂ /N ₂ , ¹⁴ CO ₂ , Halocarbons	Flask	
National Institute of Advanced Industrial Science and Technology (AIST)	CO ₂ isotope ratio (δ^{13} C, δ^{18} O), δ O ₂ /N ₂ , δ Ar/N ₂ , δ^{15} N of N ₂ , δ^{18} O of O ₂ , δ^{40} Ar	Flask	

Relation between ²²²Rn and CO₂, CO, CH₄

- High resolution measurements of Rn well captured a synoptic-scale increase due to the intrusion of continental air masses.
- Synoptic-scale variation of radon was brought by a passage of cold front associated with a moving cyclone.

Wada et al. (2013), TellusB

Conclusions

- We have been operating three groundbased stations and <u>obtained long-term data</u> <u>properly</u>.
- We use advanced laser based analyzers and achieve better measurement precision.
- We started collaboration work since 2011 and the data has been accumulated.

Reference

- Tsuboi et al. (2013), Evaluation of a new JMA aircraft flask sampling system and laboratory trace gas analysis system, *Atmos. Meas. Tech., 6,* 1257-1270, doi:10.5194/amt-6-1257-2013.
- ii. Niwa et al. (2014), Seasonal Variations of CO₂, CH₄, N₂O and CO in the Mid-Troposphere over the Western North Pacific Observed Using a C-130H Cargo Aircraft, *J.Meteorol. Soc. Japan*, 92(1), 55-70, doi:10.2151/jmsj.2014-101.
- iii. Ishidoya et al. (2014), New Atmospheric O₂/N₂ Ratio Measurements over the Western North Pacific Using a Cargo Aircraft C-130H, SOLA, vol.10, 23-28, doi:10.2151/sola.2014-006.
- iv. Wada et al. (2013), Quantification of emission estimates of CO₂, CH₄, and CO for East Asia Derived from atmospheric radon-222 measurements over the western North Pacific, *Tellus B 2013, 65, 18037, doi:10.3102/tellusb.v65i0.18037.*