Global Atmosphere Watch in Korea

Climate Change Monitoring Division (CCMD) Climate Science Bureau (CSB) Korea Meteorological Administration (KMA)

* Korea GAW Center was restructured to CCMD in 2015 Measurement stations are managed by NIMR/EMRD, KMA **Climate Change Monitoring Division**

Measurement Stations & Programs

Main and Auxiliary Stations of KMA

3 main stations and 9 auxiliary stations in the Korean Peninsula 1 auxiliary station in Antarctica

Annycondo (AMY) B. Gangneung G. Gyin Jeju Gosan (JGS) B. Gangneung G. Gosan

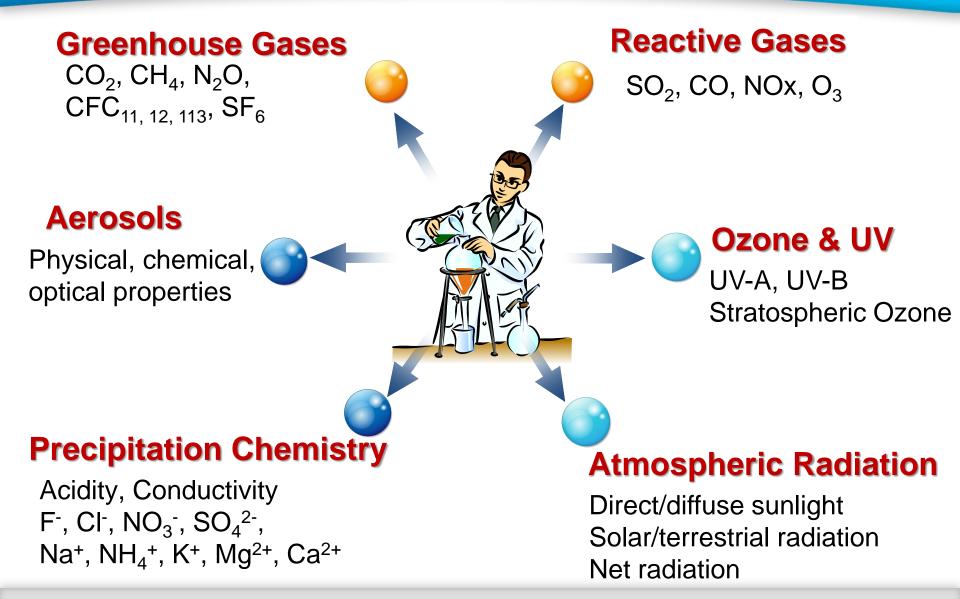
H. Antarctica (King Sejong)

Main stations (KMA)

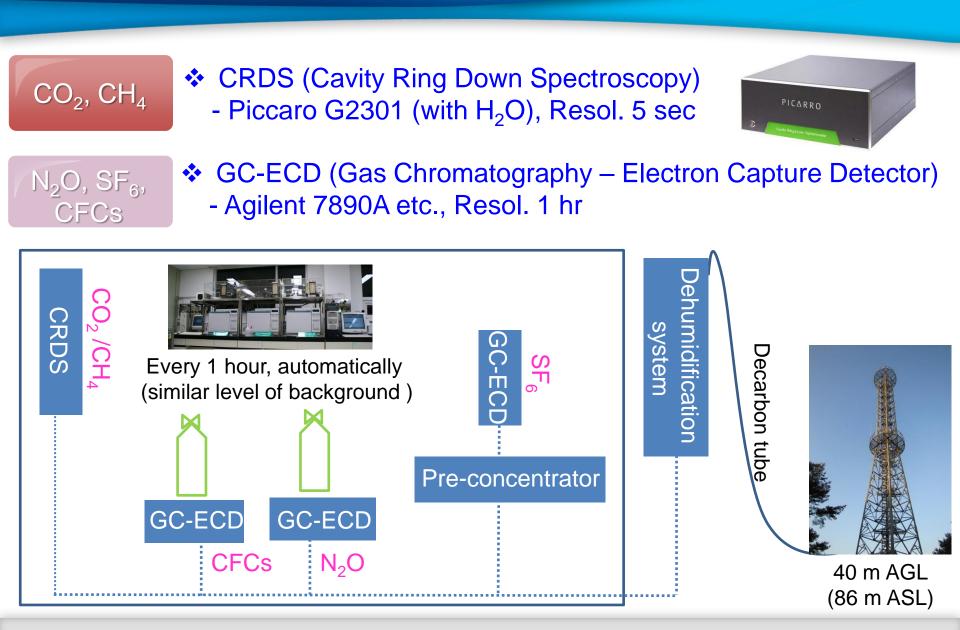
- AMY, JGS, ULL
- GHGs, Reactive gases, Aerosols, Strat. O₃, Radiation, Precip. Chem.

Auxiliary stations (KMA)

- B : Strat. Ozone, UV
- C : Precip. Chem.
- D : Ozone-sonde, UV
- F : UV


Auxiliary stations (Univ.)

- A : CO_2 flux, Strat. H₂O, Strat. O₃, UV
- E : Aerosol LIDAR, AOD
- G : Radon
- H : CO₂, Strat. O₃


Climate Change Monitoring Division

(Main stations are run by EMRD, NIMR)

Measurement Programs

Greenhouse Gases (GHGs)

Reactive Gases

NOx

Gas-phase Chemiluminescence
 Resol. 5 min (42i-TL, Thermo Sci.)

Ultraviolet Flourescence
 Resol. 5 min (43i-TLE, Thermo Sci.)

- Resol. 5 min (49i, Thermo Sci.)

CO

 O_3

Nondispersive Infrared Photometer (NDIR)
Resol. 5 min (48i-TLE, Thermo Sci.)

\rightarrow changing to CRDS (G2401, CO/CO₂/CH₄/H₂O)

Aerosols – Instruments

Size Distribution Resol. 3 min

- Scanning Mobility Particle Sizer : 0.01-0.5 µm, 54 Ch
 Aerodynamic Particle Sizer: 0.5-20 µm, 52 Ch.
- **Crimm Dust-monitor** : 0.25-32 μm, 31 Ch.

✤ ß-ray PM₁₀, PM_{1, 2.5, 10} (Grimm Dust-monitor)

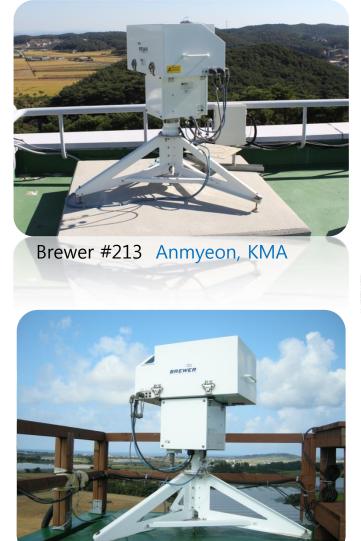
Scattering/ Absorption Resol. 5 min Nephelometer: 3 wavelengths (RGB)

Aethelometer

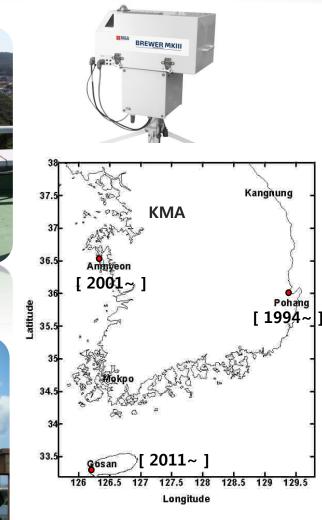
AOD

Resol. 1 min

- Sunphotometer: 5 Ch. (368, 500, 675, 778, 862 m
- Precision Filter Radiometer: 4 Ch. (368, 412, 500, 862 nr


Vertical Distribution Resol. 20 min

- Aerosol LIDAR (1064, 532 nm)
 - Backscattering coeff., Depolarization ratio, Color ratio


High Volume Sampler (TSP, PM10, PM2.5, 1 day/week)

Climate Change Monitoring Division

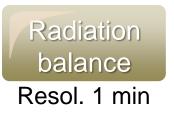
Stratospheric Ozone

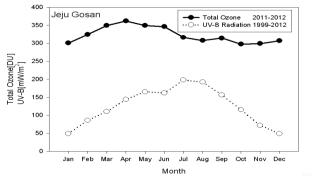
Brewer #196 Jeju Gosan, KMA

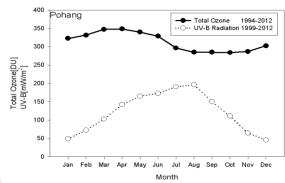
Brewer #161 WMO/GO3OS Stn No. 332. Pohang, KMA

Ozonesonde Model 5A ECC Pohang, KMA

Atmospheric Radiation & UV


UV-Radiometer (320-400 nm)
 UV-Biometer (280-320 nm)


Direct / Diffuse Solar


Resol. 1 min

- Pyheliometer (200-2800 nm)
- Shadow band Pyranometer (305-2800 nm)

Pyranomter, Pyrgeometer (3-50 µm)
 Net Pyradiometer (0.3-50 µm)

Integrated surface radiation system for upward/downward radiation measurements

Climate Change Monitoring Division

Precipitation Chemistry

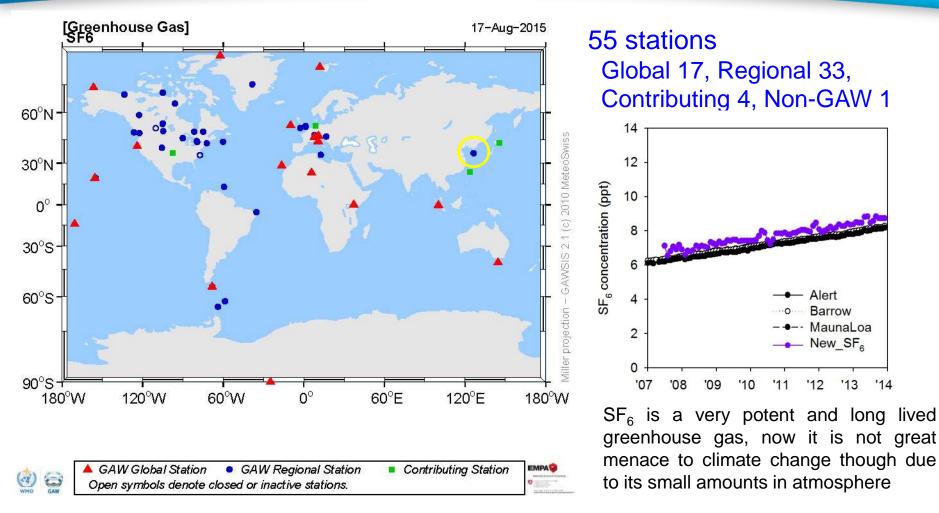
Automatic Dry & Wet Sampler - wet (at precipitation), dry (monthly)

Acidity Conductivity pH meter Conductivity meter

lons

Ion Chromatography
F⁻, Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²

Heavy metals AI, Ca, Fe, K, Mg, Na, S, Ti, Mn, Zn, Cu, V, Cr, Co, Ba, Pb, U



Climate Change Monitoring Division

WCC-SF₆ Activities

World Calibration Centre for SF_6 (WCC- SF_6)

KMA has measured SF_6 since 2007, was designated as the WCC- SF_6 in 2012, and has run it since 2013.

Climate Change Monitoring Division

World Calibration Centre for SF_6 (WCC- SF_6)

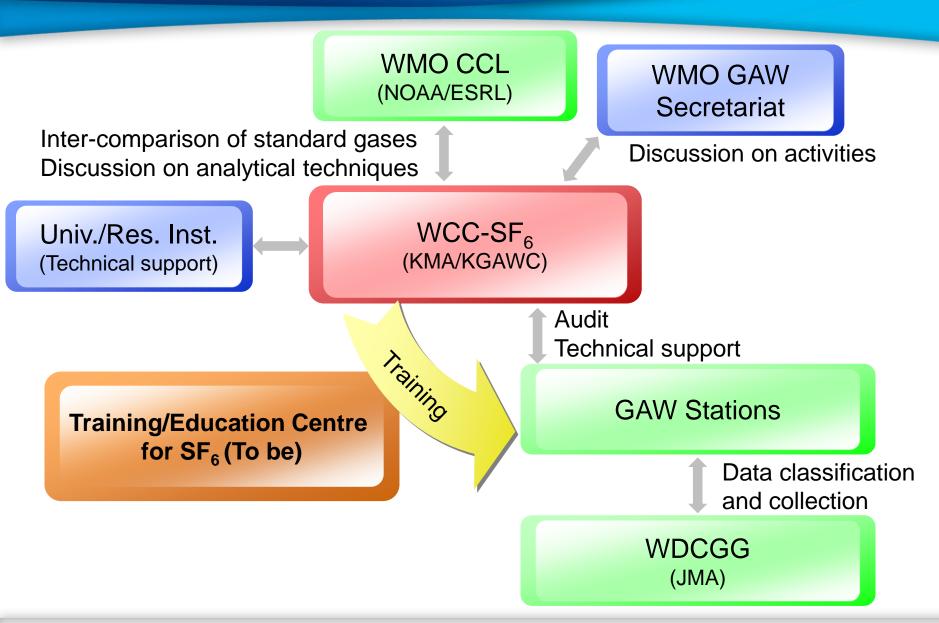
(Agreed on 11 Oct. 2012)

1.2. The KMA/KGAWC will perform, within the framework of this MoU, the following activities:

a) assist WMO Members operating WMO/GAW stations to link their sulphur hexafluoride (SF₆) observations to the WMO/GAW Reference Scale through comparisons with standards calibrated against the primary/secondary standards maintained by the Central Calibration Laboratory for SF₆;

b) assist the WMO/GAW Scientific Advisory Group (SAG) on Greenhouse Gases in the <u>development of the quality control procedures</u> required to support the quality assurance of SF₆ measurements and ensure the traceability of these measurements to the corresponding primary standard;

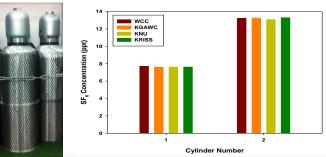
c) maintain laboratory and transfer SF_6 gas standards that are traceable to their respective primary standard(s);

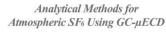

d) perform regular calibrations and inter-comparison campaigns involving the WMO/GAW stations/laboratories;

e) assist in provision of training and long-term technical help for WMO/GAW stations; and

f) <u>make public its involvement</u> in the WMO/GAW Programme (e.g. on its websites, in its newsletters).

- a) \rightarrow Distribution of the tertiary standards Audit
- b) \rightarrow Development of the Q/C procedures
- c) \rightarrow Development of the tertiary standards
- d) \rightarrow Round-robin comparison experiments
- e) → Training and education course, Technical support
- f) \rightarrow Publications, e.g., newsletters


Operation of WCC-SF₆



Climate Change Monitoring Division

What WCC-SF₆ has done

- Development of SOP
 - Posted on WMO GAW website
- Distribution of tertiary SF₆ standard gases
 - in connection with audit and technical support
- Audit & technical support
 - Diagnose the measurement system
 - Help build up and improve methodologies
 - IITM in Sep. 2015, Cape Point in Feb. 2016
- Round Robin Comparison
 - Start in Dec. 2015
- Training and education course
 - Annually hold the course linked with APGG

WMO/GAW Report No. 222

de.	↓ Multi-point calibration (4 standard gases ranged 6~12 ppt) ↓ (unit: ppt)							
# of meas. Sample	1	2	3	4	5	SF ₆ from WCC [SD]	SF ₆ from CCL [SD]	Difference (WCC-CCL)
FB03054	6.651	6.649	6.629	6.636	6.612	6.635 [0.016]	6.633 [0.012]	+0.002
FB03560	7.841	7.833	7.851	7.828	7.901	7.851 [0.029]	7.885 [0.019]	-0.034
WMO recommended measurement target for SF ₆ : 0.02 ppt Two-point calibration (6, 8 ppt)								

Collaboration with IITM via WCC-SE₆

- Collaborate on greenhouse gas monitoring activities at IITM's stations with technical assistances of the WCC-SF₆
 - Improve a GC-ECD instrument for simultaneous measurements of atmospheric N₂O and SF₆
 - Provide SF₆ standard gases
 - Share know-how for trace gas measurements using a GC instruments

Done in Sep. 2015

Asia-Pacific GAW Workshop on GHGs (APGG)

 $1^{\mbox{\scriptsize st}}$ Asian GAW workshop in 2009

2nd Asian GAW workshop in 2010

3rd Asian GAW workshop in 2011

4th Asian GAW workshop in 2012

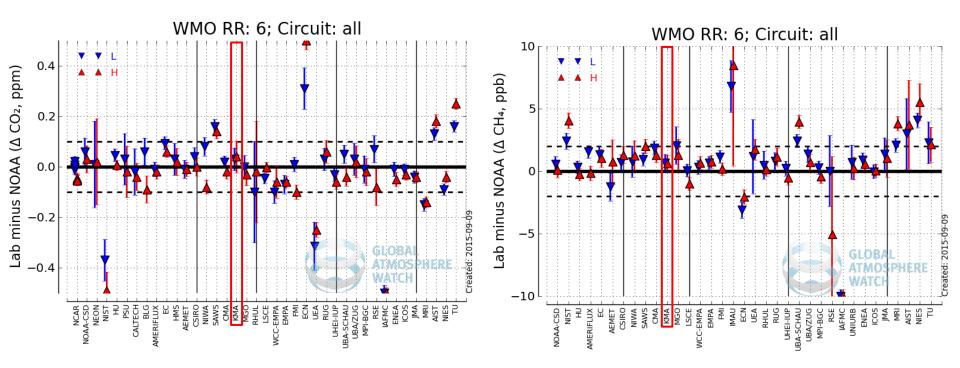
5th Asia-Pacific GAW workshop in 2013

6th Asia-Pacific GAW workshop in 2014

http://www.wmo.int/pages/prog/ arep/gaw_home_en.html

 ✓ In connection with WCC-SF₆ Training & Education Course **Climate Change Monitoring Division**

Int'l Comparison Experiments & Audits



Participation in Round-Robin Comparisons

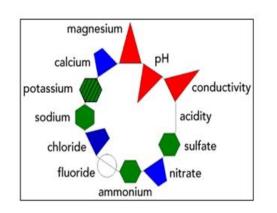
ΔCO_2 , ΔCH_4 , ΔN_2O , ΔSF_6 , ΔCO

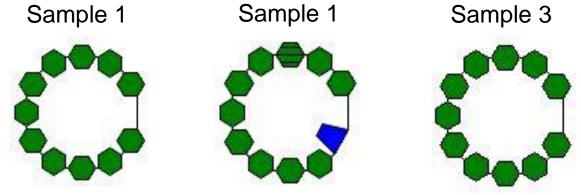
in RR6 (2014-2015) organized by WMO-CCL in NOAA

(Sample analysis by KMA/KGAWC was done in Dec. 2014)

Participation in Methane Inter-comparisons

Methane Reference Gas Inter-comparisons Organized by WMO WCC-CH₄ in JMA

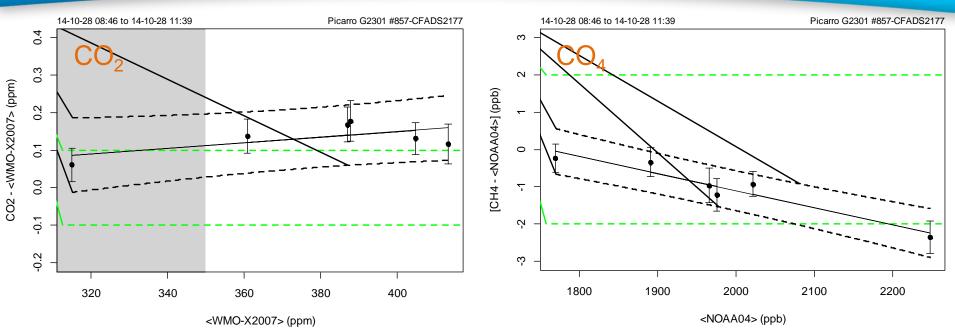

Number of Round	Region	Period of Intercomparison	Participating Laboratory	Cylinder No.	
1st	Asia	Apr. 2001 - Nov. 2001	JMA, CMA, KMA	CPB13002 CPB13003	
	South-West Pacific	Apr. 2002 - Dec. 2003	JMA, CSIRO, NIWA		
	Japan	Sep. 2004 - Mar. 2005	JMA, TU, NIES	OF B13003	
2nd	Asia	Jul. 2005 - Aug. 2006	2006 JMA, CMA, KMA, KRISS		
	South-West Pacific	Dec. 2006 - Aug. 2008	JMA, CSIRO, NIWA	CPB31289 CPB31288	
	Japan	Jun. 2009 - Jan. 2010	JMA, NIES, TU	CF BJ 1200	
3rd	Asia	May 2008 - Jul. 2009 JMA, KRISS, KMA, CMA			
	South-West Pacific	Apr. 2010 - Feb.2011	JMA, CSIRO, NIWA	CPB13002	
	Japan	Oct. 2012 - Feb. 2013	JMA, NIPR, AIST, MRI, NIES, TU	CPB13003	
<u>4th</u>	Asia	Jun. 2011 - Mar. 2012	JMA, CMA KMA	CPB31288 CPB31289	
	South-West Pacific	Jun. 2013 - Apr. 2014	JMA, CSIRO, NIWA, NOAA/ESRL		
	Japan	2015 - (In the planning)			
5th	Asia	2014 - (Ongoing)	KMA	CPB13002	
	South-West Pacific	2016 - (In the planning)		CPB13003	


Climate Change Monitoring Division

(Source: http://ds.data.jma.go.jp/gmd/wcc/wcc.html)

Participation in Precip. Chem. Inter-comparisons

Inter-comparison in Precipitation Chemistry Organized by WDC-PC



<Results of Inter-comparisons held in May 2015>

- ✓ Good: IQR (Interquartile Range, 25th ~75th)
- ✓ Satisfactory: within Median ± IQR/1.349
- ✓ Unsatisfactory: out of Median ±IQR/1.349
- ✓ Out of Detection Limit

Audit by WCC-CO₂,CH₄ (EMPA)

- Small offset of about 0.1 ppm, probably due to differences in the NOAA standards.
- Good agreement within the WMO/GAW DQOs
- Small overestimation expected at <1600 ppb, underestimation at >2200 ppb

<Recommendations>

- The good results showed that the whole measurement set-up is appropriate, and no immediate change of the current praxis is needed.
- It should be considered to use an automated system for calibrations, which would allow the measurements of target and WS.

Audit by WCC-CO₂,CH₄ (EMPA)

Summary Ranking of the Anmyeon-do GAW Station							
System Audit Aspect	Adequacy [#]		Comment				
Access		(5)	All year access possible				
Facilities							
Laboratory and office	e space	(5)	Large laboratory facilities				
Internet access		(5)	Reliable, sufficient bandwidth				
Air Conditioning		(5)	Fully adequate				
Power supply		(5)	Reliable				
General Management an	d Operation						
Organisation		(5)	Well organised, clear responsibilitie				
Competence of staff		(4)	Good technical and scientific knowledge, international collabora- tion encouraged				
Air Inlet System		(5)	Adequate system				
Instrumentation							
CO ₂ /CH ₄ (Picarro G2	301)	(5)	Adequate instrumentation				
Standards							
CO ₂ , CH ₄		(4)	NOAA standards, additional work- ing standards recommended				
Data Management							
Data acquisition		(5)	Fully adequate				
Data processing (CO	2, CH ₄)	(4)	Current praxis of weekly instrument calibration results in small jumps.				
Data submission (CO	2, CH ₄)	(5)	Timely, regular submission				
[#] 0: inadequate thru 5: ade	quate.						
Dübendorf, August 2015							
ans	Martin Steiballer	_	B. Budiman				
Dr. C. Zellweger WCC-Empa	Dr. M. Steinbacher QA/SAC Switzerland		Dr. B. Buchmann Head of Department				

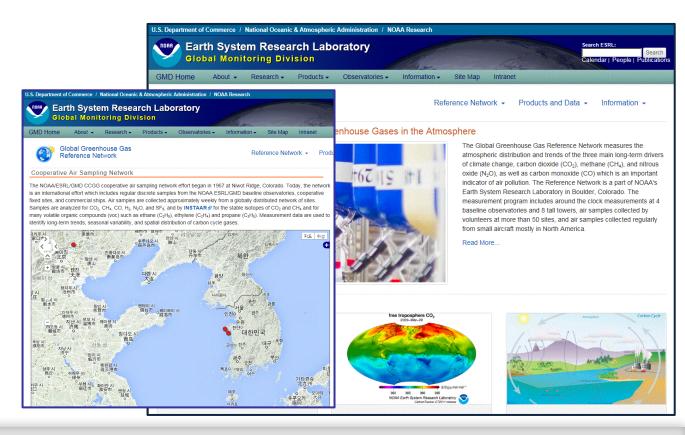
Conclusion of the report

- The Regional GAW station Anmyeon-do comprises a very comprehensive set of measurements.
- The combination of long-term measurements, the large number of measured parameters and the location of the site make the AMY station a very important contribution to the GAW programme.
- The assessed GHG measurements were of high quality.
- ✓ WCC-Empa strongly encourages this process, since the available data would be a very valuable contribution to GAW.
- The continuation of the Anmyeon-do measurement series as well as the inclusion of the reactive gases measurement programme as GAW parameters is highly recommended.

Climate Change Monitoring Division

Int'l Cooperation

International Cooperation


- Canada/ EC
 - Ozone, UV
- China/ CMA
 - GHGs
- Germany/ DWD
 - Aerosols
 - precipitation chemistry
- India/ IITM
 - GHGs
- Japan/ JMA
 - GHGs
- Vietnam/ NHMS
 - GHGs

 ✓ Share the measurement data and techniques
 ✓ Improve the QA/QC and data quality

Cooperation with NOAA

Comparison of real-time measurements of CO₂ & CH₄ with a flask sampling since Dec. 2013.

- KMA: CO₂, CH₄ from CRDS at rate of 5 sec.
- NOAA: ~20 species from a flask sampling once a week

Climate Change Monitoring Division

Int'l Comparison Experiments & Audits

Integration of GAW-related Observations in Korea

6 GAW regional stations in the Korean Peninsula
 1 GAW regional station in Antarcticas and china

Taeahn Peninsula (TAP) - GHGs

Anmyeon-do (AMY) - GHGs, Reactive gases, Aerosols, Strat. Qzone, Radiation, Precip. Chem. Gosan (GSN)

Jeju Gosan (JGS)

Pohang (POH) - Strat.Ozone, UV

GHGs, Reactive gases, Aerosols, Strat. Ozone, Radiation, Precip. Chem.

Sking Sejong (KSG), Antartica : GHGs, Strat. Ozone, UV

Share the techniques & data in fields of GAW

Climate Change Monitoring Division

Gosan (GSN), Supersite (SNU, KNU, JNU, KMA, etc.)

Super site

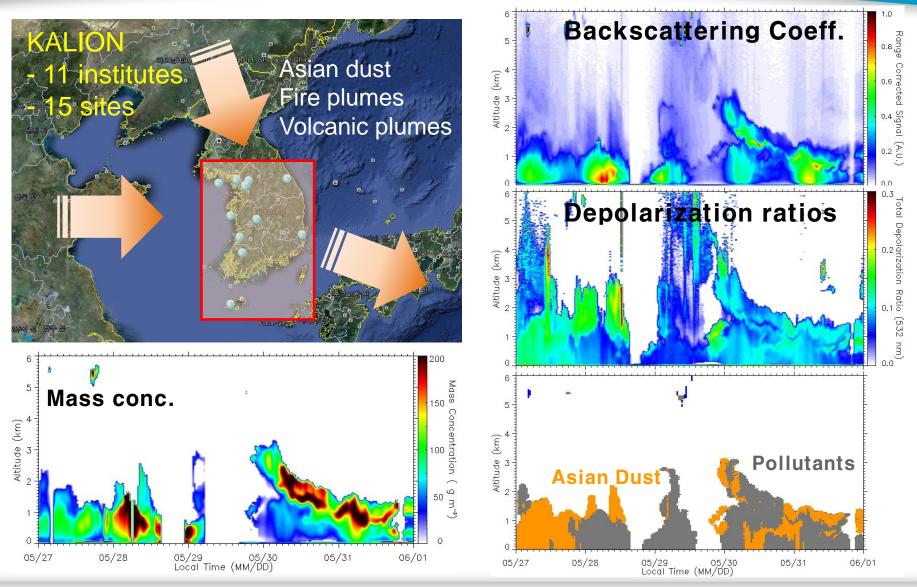
KMA station

항공촬영일 2013.12.14.

Gosan (GSN), Supersite (SNU, KNU, JNU, KMA, etc.)

Aerosols

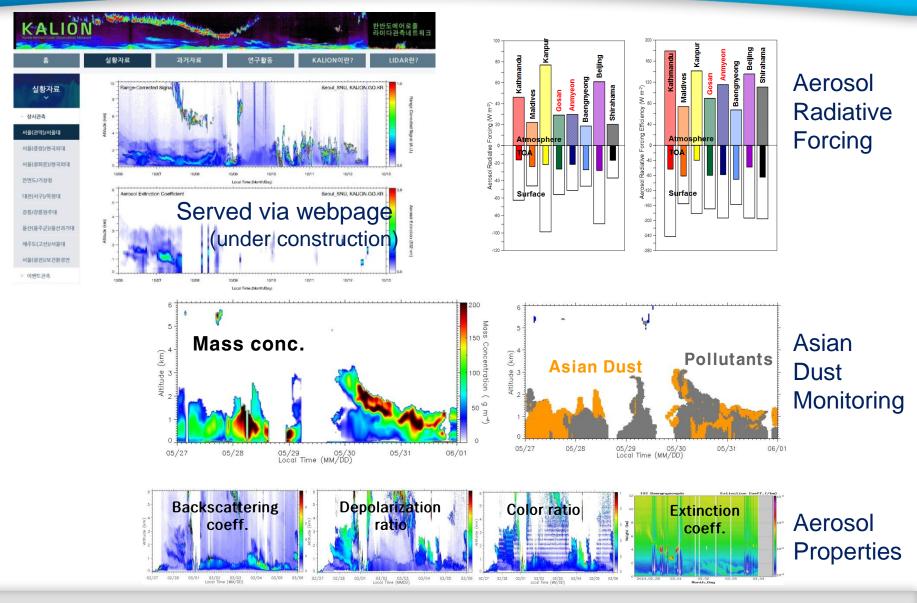
- PM_{1,2.5,10}, EC/OC, Scatt./Absorp. coeff., Size distrib., No. density, AOD, SSA, Vert. distrib.
- ions/elements (>30)
- Greenhouse gases (AGAGE)
 - CO₂, CH₄, Isotopes, Halogenated (CFCs, HCFCs, HFCs, PFCs)
 - Atmospheric radiation


Reactive gases

- Direct/indirect solar radi., Terrestrial radi., UV.

Others: Rh, Precip. ohem.

 \Rightarrow Will try to register as the GAW global station


Korea Aerosol LIDAR Observation Network

Climate Change Monitoring Division

⇒ Plan to join GALION

Data Sharing & Output from KALION

Climate Change Monitoring Division

KOICA : Training & Education Programme

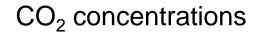
Title : Capacity building on Climate Change Driver Monitoring Techniques: Greenhouse Gases

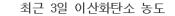
* Beneficiaries : technicians or researchers with bachelor's degree of countries which have been monitoring and have a plan to monitor greenhouse gases in the atmosphere

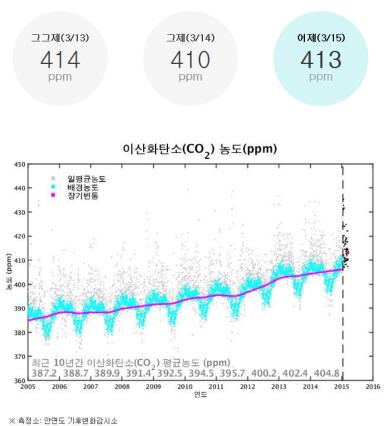
Implementation Agency: Korea Meteorological Administration

- Program module: Theorectical lecture (30%), Practice (70%)
- Duration: 14 days (once a year)

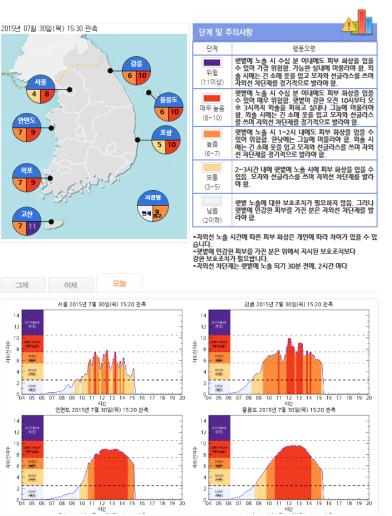
Start: 2017

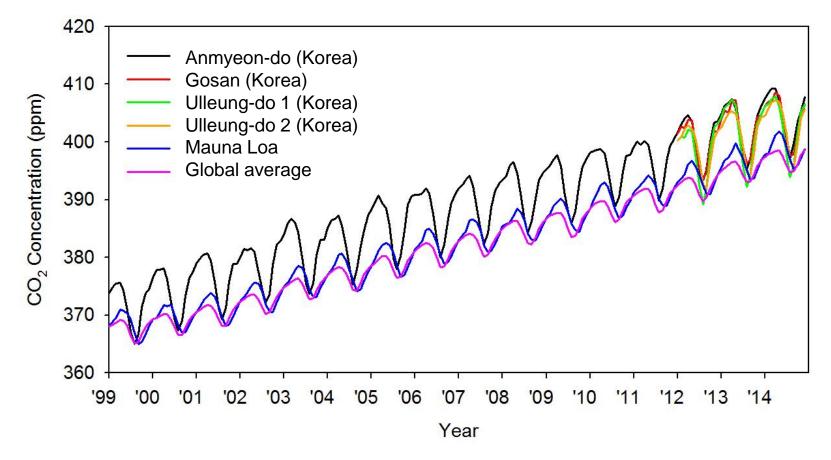

** Election campaign pledges for an IPCC Chair, done in Oct. 6, 2015


Climate Change Monitoring Division


Public Service

On-line Public Service via KMA Webpage

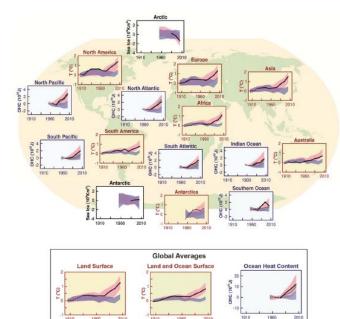




※ 월평균과 연평균값은 1년후 발표됩니다

UV index

Summary (1/2) : Current



We make this kinds of plots on other components in fields of GAW, and improve/develope techniques for the GAW activities

Climate Change Monitoring Division

Summary (2/2) : Future Plan

- Int'l cooperation
 - Share the data and techniques
- Estimation of emissions from measurement data
 - using top-down approach
- Retrieval of the vertical information
 - using ground-based/satellite-borne remote sensing techniques

Models using only natural forcings

Addels using both natural and anthropogenic forcings

- Climate system
 - Atmosphere: Temp., Precip.
 - Ocean: Sea level, Surf. temp., Acidity
 - Cryosphere: Glaciers, Snow cover
 - Carbon and Other Biogeochemical Cycles
 - Ecosystem Change

servation

History of GAW in Korea

1987. 1.	Establishment of a weather station at Mt. Soback (Purpose of air pollution measurements)
1996. 9.	Movement from Mt. Soback to Anmyeondo Beginning of background atmosphere watch at Anmyeondo
1998. 4.	Continuous measurement of greenhouse gases and radiation $(CO_2, CH_4, N_2O, CFC-11, 12, designated a GAW regional station)$
2003. 12.	Sampling from 40 m tower (AGL) (~86 m ASL)
2007. 1.	Beginning of continuous measurement of CFC-113 and SF ₆ Aerosol sampling from the integrated inlet system
2009. 1.	Operation of the Jeju Gosan (JGS) station (Designated a GAW regional station in 2013)
2012. 10.	Establishment of WMO/GAW World Calibration Centre for SF ₆
2014. 5.	Operation of the station at Ulleungdo

Climate Change Monitoring Division

Measurement Stations of KGAWC

Anmyeondo (AMY) Station

Greenhouse Gases CO_2 , CH_4 , N_2O , $CFC_{11, 12, 113}$, SF_6

Reactive Gases SO₂, CO, NOx, O₃

Precipitation Chemistry Acidity, Conductivity F⁻, Cl⁻, NO₃⁻, SO₄⁻²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺ Aerosols Physical, chemical, optical properties

> Ozone & UV UV-A, UV-B Stratospheric Ozone

Atmospheric Radiation Direct/diffuse sunlight Solar/terrestrial radiation Net radiation

Anmyeondo (AMY) Station

Tower (40m) inlets for GHGs

Lat.: 36.538 86° (36°32'19.9") Lon.: 126.329 95° (126°19'47.8") ASL: 85.119 m

Brewer, Sunphotometer, Precision Filter Radiometer

Lat.: 36.538 65° (36°32'19.1") Lon.: 126.330 05° (126°19'48.2") ASL: 56.496 m

Atmospheric Radiation

Lat.: 36.538 46° (36°32'18.5") Lon.: 126.329 95° (126°19'47.8") ASL: 47.026 m

AWS, Inlets for aerosols Aerosol LIDAR

Lat.: 36.538 79° (36°32'19.7") Lon.: 126.330 22° (126°19'48.8") ASL: 57.697 m

FTIR (KMA/NIMS, KRISS)

Lat.: 36.538 79° (36°32'17.7") Lon.: 126.330 22° (126°19'48.8") ASL: 57.697 m

FTS (KMA/NIMS)

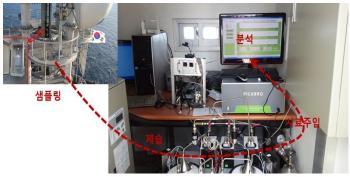
Lat.: 36.538 22° (36°32'17.6") Lon.: 126.331 02° (126°19'51.7") ASL: 23.810 m

Jeju Gosan (JGS) Station

Lat./Lon. : 33°18'N / 126 °12'E

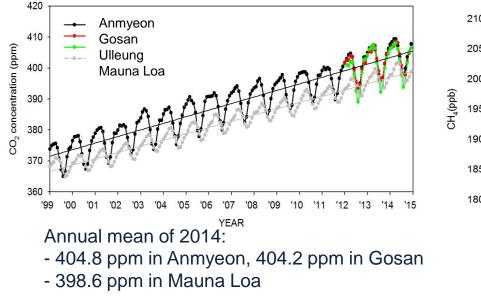
- Stratospheric O₃ /UV-A, UV-B,
 - Total O₃ Column
 - UV-А, UV-В,
- Atmospheric radiation
 - PFR, Solar/ Terrestrial radiation
- Precipitation chemistry
 - Acidity, Conductivity, Ions
- Greenhouse gases
 CO₂, CH₄, N₂O, SF₆
- Reactive gases
 - CO, SO₂, NOx, O₃
- Aerosols
 - PM₁₀, APS (0.5-20 µm), CPC (0.01-3 µm), PM_{1,2.5,10}
 - AOD (from PFR)

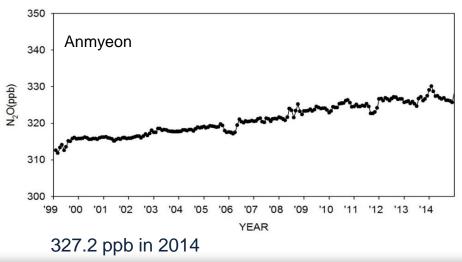
Ulleungdo (ULL) Station

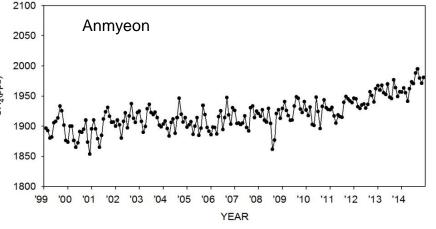


Greenhouse gases : CO₂, CH₄, N₂O, SF₆

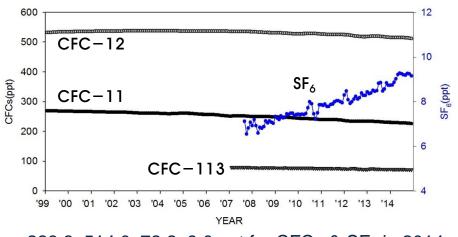
- Reactive gases : CO
- Aerosols : PM_{1, 2.5,10}, AOD, APS (0.5-20 μm)
- Radiation
 - UV-A, UV-B, PFR
 - Solar/ Terrestrial radiation
- Precipitation chemistry
 Acidity, Conductivity, Ions


~80 km Lat. : 37° 14' 23.34" N Lon. : 131° 52' 09.73" E

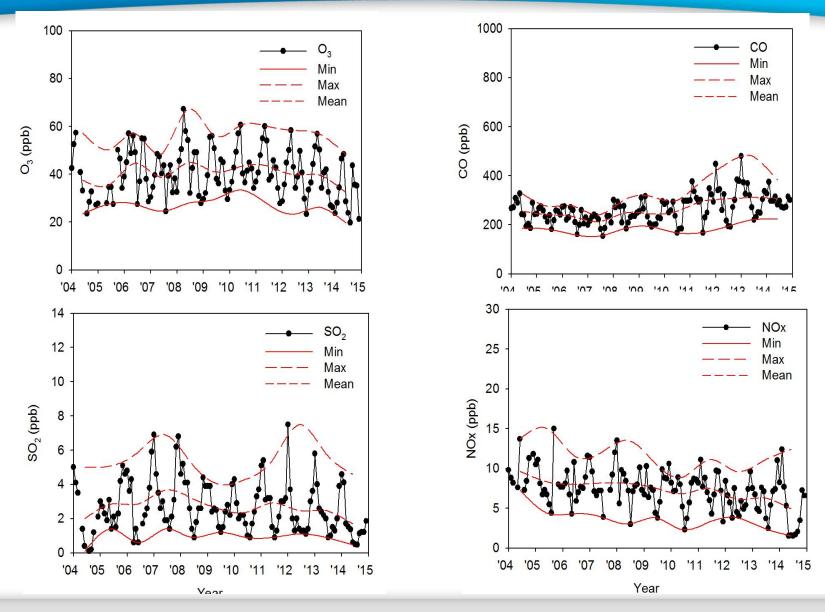




Greenhouse gases
 - CO₂, CH₄
 (Remotely controlled)

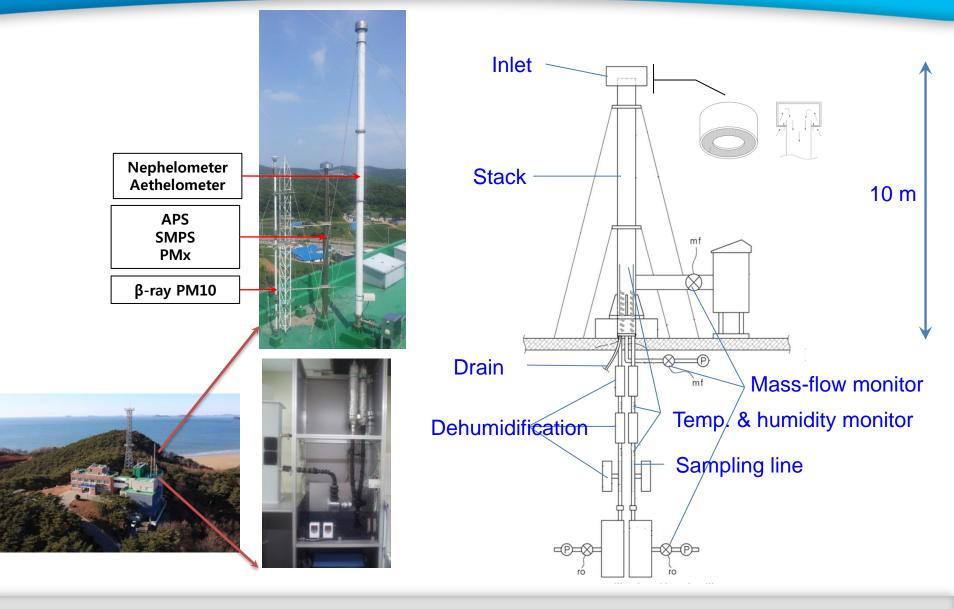

E.g. of GHG Measurements

1970 ppb in 2014

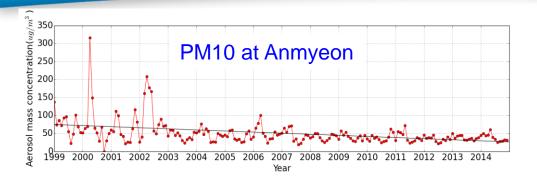


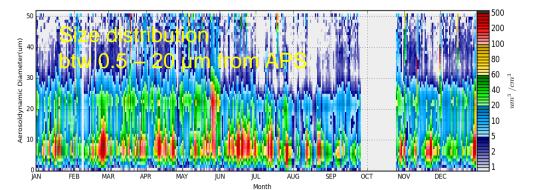
228.3, 514.0, 72.2, 9.0 ppt for CFCs & SF₆ in 2014

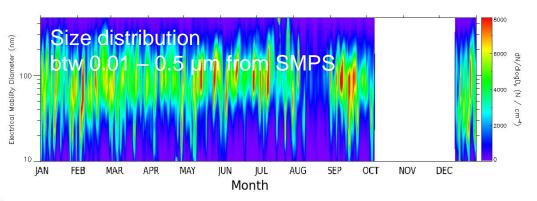
Climate Change Monitoring Division

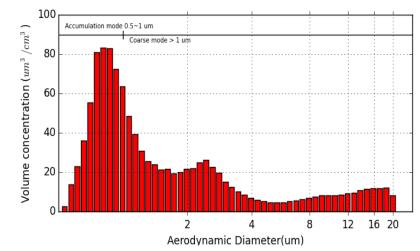

* Global/ML data was obtained from WDCGG

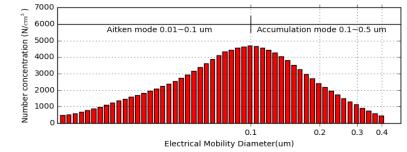
E.g. of Reactive Gas Measurements

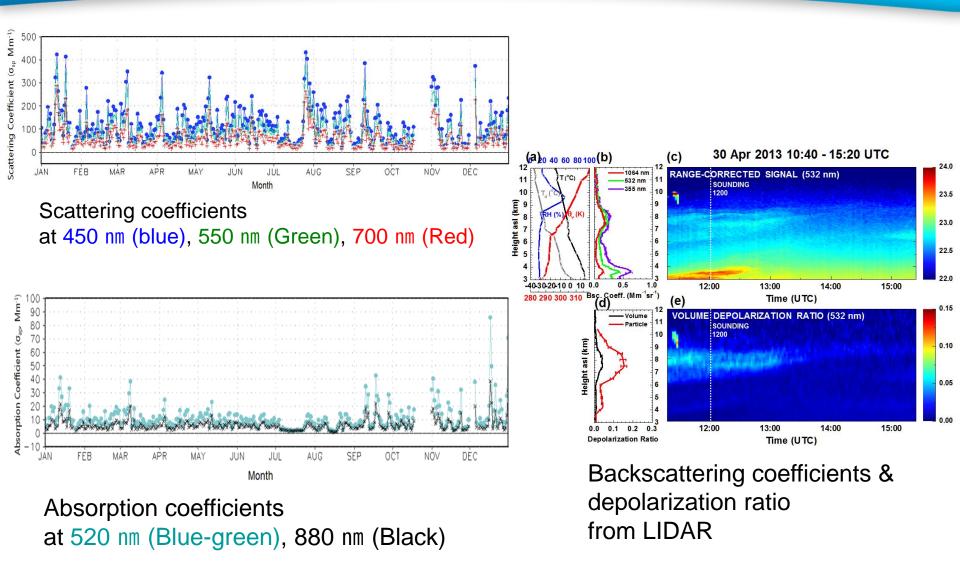


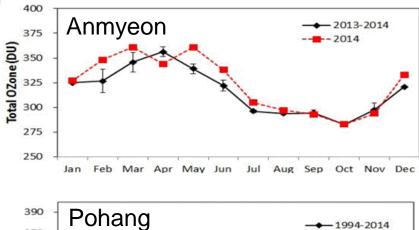

Climate Change Monitoring Division

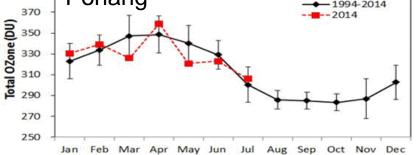

Aerosols – Inlet System

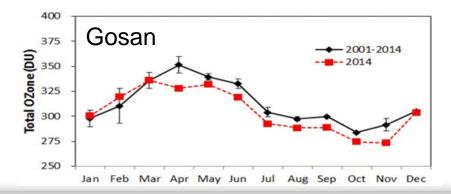


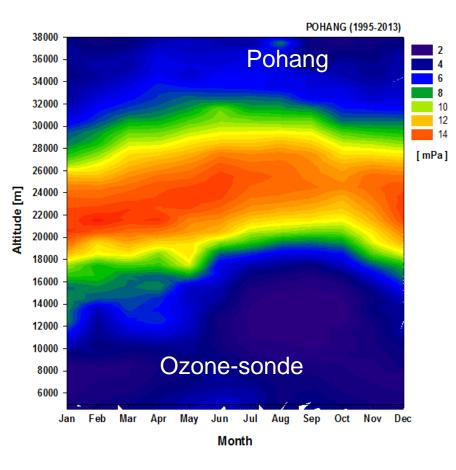

E.g. of Physical Properties



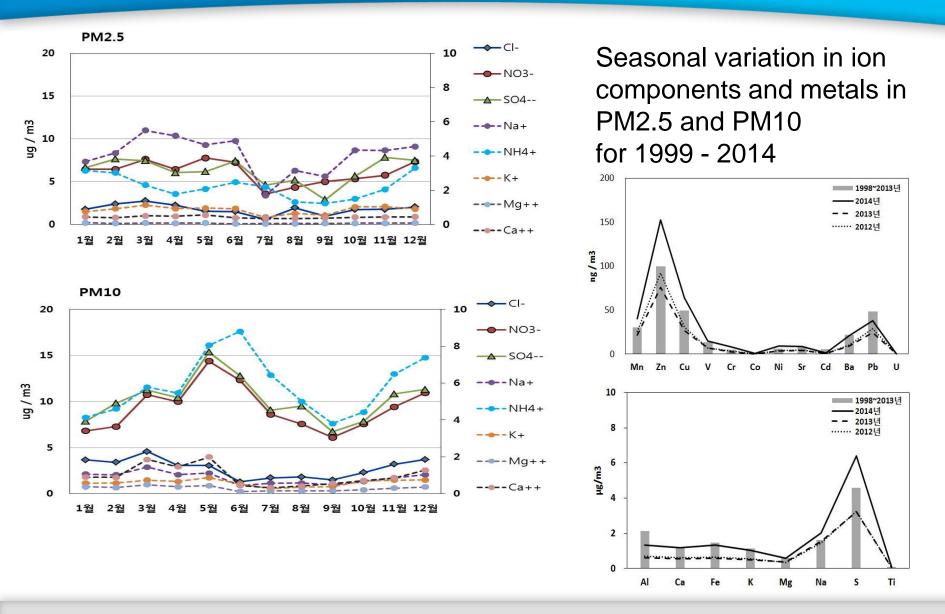


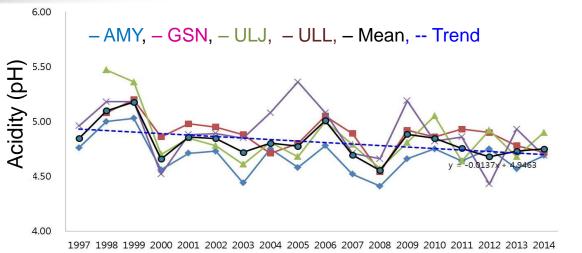

Climate Change Monitoring Division

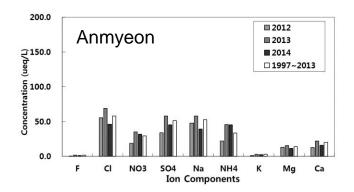

E.g. of Optical Properties



E.g. of Strat. Ozone Measurements







E.g. of Chemical Properties

E.g. of Precipitation Chemistry Measurements

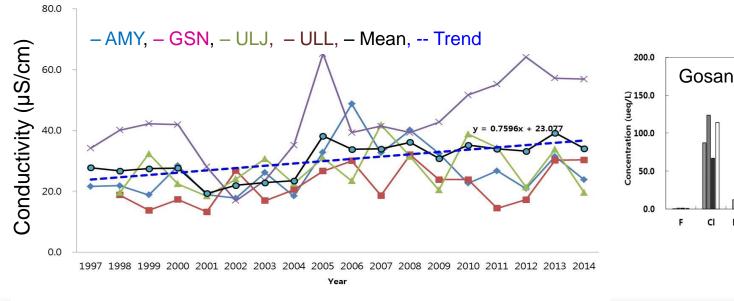
CI

NO3

SO4

Na

Ion Components


NH4

■ 2012

2013

2014 D 1998-2013

Ca

Climate Change Monitoring Division