A new statistical method for determining regional baseline concentrations of atmospheric trace gases

Chun Ok Jo, Shanlan Li, Mi-Kyung Park (KNU-KIO, SNU-RIO) Haeyoung Lee, Chulkyu Lee (KMA), Kwang-Yul Kim (SNU), and Sunyoung Park (KNU)

> The 6th Asia-Pacific GAW Workshop October 2014 Sunyoung Park Kyungpook National University

> > The Korea GAW center in Anmyeon-do

GAW Monitoring Stations

Global vs. Regional

Atmospheric CO₂ concentrations at "regional" GAW stations: a complex mix of local, regional, global sources and sinks

GAW Monitoring Stations

Global vs. Regional

Atmospheric CO₂ concentrations at "regional" GAW stations: a complex mix of local, regional, global sources and sinks

Baseline Concentrations of Trace Gases

Underlying concentration in the absence of all local and regional effects

Why important?

- To investigate the natural variations and trend in atmospheric concentrations and the regulating processes
- To identify the contribution of local and regional pollutions
- To provide appropriate data for model-observation comparisons

Baseline CO₂ Concentration

Fundamental components of baseline signal: Diurnal variations + Seasonal cycle + Trend

Baseline CO₂ Concentration

A new method based on cyclostationary empirical orthogonal function (CSEOF) analysis

 $C(t) = \sum_{n} B_n(t) T_n(t)$

Loading vector: $B_n(t) = B_n(t+d)$

PC time series: $T_n(t)$

Physical Evolution (deterministic)

Temporal undulation (stochastic)

d, *d*': nested periods

$$T_n(t) = \sum_m D_m^{(n)}(t) P_m^{(n)}(t)$$

Loading vector: $D_m^{(n)}(t) = D_m^{(n)}(t+d')$ PC time series: $P_m^{(n)}(t)$

CSEOF analysis decomposes time series data into a series of physical (deterministic) evolution and corresponding amplitude (stochastic) time series.

Kim, K.-Y., and G. R. North, 1997

KIO Method

Signals representing daily variations

Signals representing daily variations

Reconstructed hourly concentration data from daily variations in good agreement with the hourly data selected based on the GAW criteria

Signals representing seasonal cycles

Reconstructed baseline concentration data

Year-to-year variations in the increasing tend

Comparison with the conventional curve fit

Reconstructed hourly baseline concentration data correspond to a curve fit for the daily data selected by a low-pass filter

Comparison with the conventional curve fit

Reconstructed hourly baseline concentration data correspond to a curve fit for the daily data selected by a low-pass filter

Comparison with other regional stations

KIO Method for Global GAW Stations

The seasonal cycles and long-term trends derived by this approach are appropriate for the 40-year time series data of global background CO₂ concentrations from NOAA observatories at Mauna Loa, Samoa, Barrow, and South Pole

KIO Method for Global GAW Stations

- Detectable discrepancies of 0.5 0.8 ppm from the seasonal cycles and trends determined based on monthly means of selected data
- Different baseline definitions cause the discrepancy even at the global stations

KIO Method for Other Atmospheric Species

Year

2-hr raw data

12/07/10 12/15/11 12/22/12 12/30/13

500

28.0%

5/07 11/21/08 11/29/09

Time series at Gosan (Mid-2007 – 2013)

Natural variability due to production and consumption by marine biota

KIO Method for Other Atmospheric Species

This approach is useful to identify baseline signals for other atmospheric trace species having natural variations upon which local and/or regional influences act on.

Summary

- A simple algorism based on CSEOF analysis were proposed to extract daily variations, seasonal cycles and trend from time series influenced by local/regional pollution events.
 ✓ Empirically-determined criteria for data selection and low-pass filters
- Empirically-determined criteria for data selection and low-pass filters are not necessary.
- Time-variant magnitudes of periodicity and year-to-year variations in the trend are described.
- ✓ Baseline concentrations for other atmospheric species can also be reconstructed.

Some caveats:

- I. Seasonality may not be 100% extracted only by the most dominant mode.
- II. For the species without diurnal patterns, the baseline might be overestimated due to high-frequency pollution influences.

By adding greenhouse gases to the atmosphere we are poking an angry beast!" – Wallace Broecker

Thank you