Why Standard Gases? -WCC-SF₆ activities at AMY-

<u>Haeyoung Lee¹, Hee-Jung Yoo¹, Jeong-Sik Lim²,</u> Jeong-Soon Lee², Chulkyu Lee¹, Bok-Haeng Heo¹ 1. Korea GAW Center, KMA, Korea 2. KRISS, Korea

GAW 😂

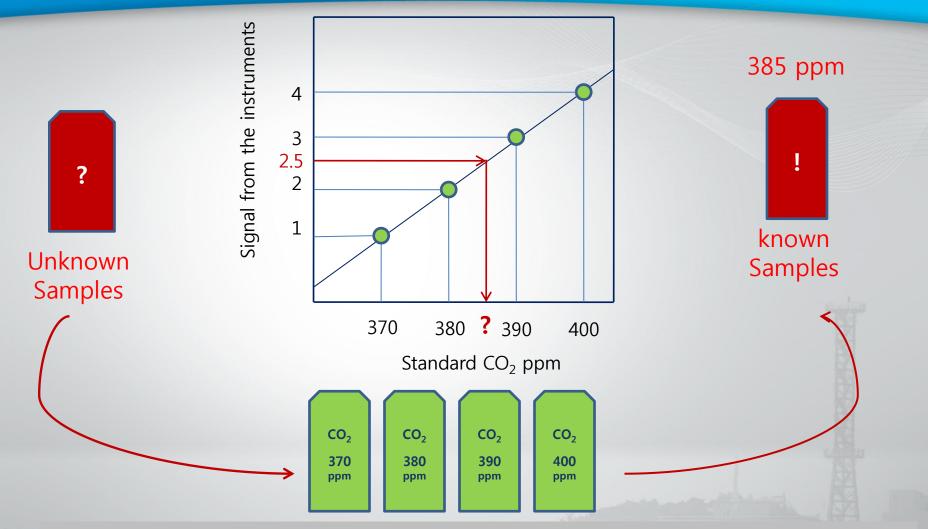
Korea Global Atmosphere Watch Center

1. Why Standard Gases?

What is the standard?

Korea **Global Atmosphere** Watch Center

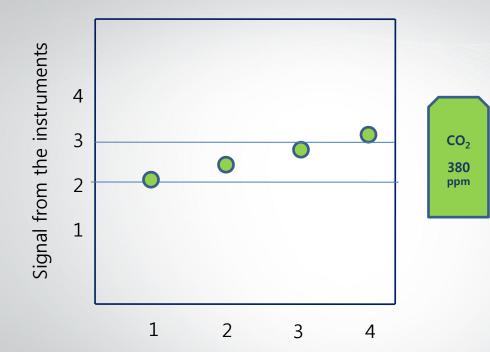
Etymology: Stand + Hard


-Flag or conspicuous subject to serve as a rallying point for a military force

-it is derived from Frankish word "standhard"

-it was called because a flag was fixed to a pole -And pole stuck in the nd upright.

Liberty leading the people, 1830, Ferdinand Eugene Victor Delacroix


What is the standard gas?

- Standard gases establish known analyzer responses to a certified chemical component
- Sample is only determined by calibration with reference standard

What is the standard gas?

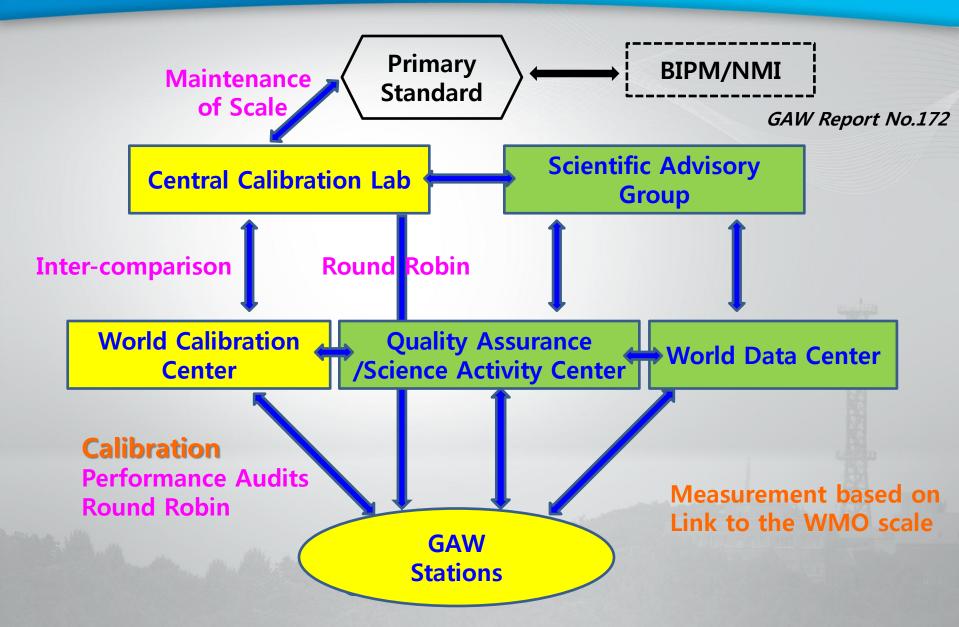
Korea Global Atmosphere Watch Center

-Injection of same concentration but difference response from Instrument

-Because we know it should have same response,

We can use it to check repeatability, reproducibility, bias...

Traceability


Compatibility

Time Expected function of Standard gas


 Standard gases make unknown samples known ~
Standard gases can check monitoring system and analysis performance ~

Traceability and compatibility

Compatibility goal in GAW

New compatibility goal, Beijing 2013

Korea Global Atmosphere Watch Center

Compatibility:

Comparison results are compatible, within a specified numerical value

Components	Compatibility goal	Extended Compatibility goal	Range in unpolluted troposphere
CO ₂	± 0.1 ppm (N.H.) ± 0.05 ppm (S.H.)	± 0.2 ppm	360-450 ppm
CH ₄	± 2 ppb	± 5 ppb	1700-2100 ppb
СО	± 2 ppb	± 5 ppb	30-300 ppb
N ₂ O	± 0.1 ppb	± 0.3 ppb	320-335 ppb
SF ₆			6-10 ppt
H ₂	± 2 ppb	± 5 ppb	450-600 ppb
•			•

Korea Global Atmosphere Watch Center

Main aims WCC-SF₆ pursue are Traceability and compatibility

Korea Global Atmosphere Watch Center

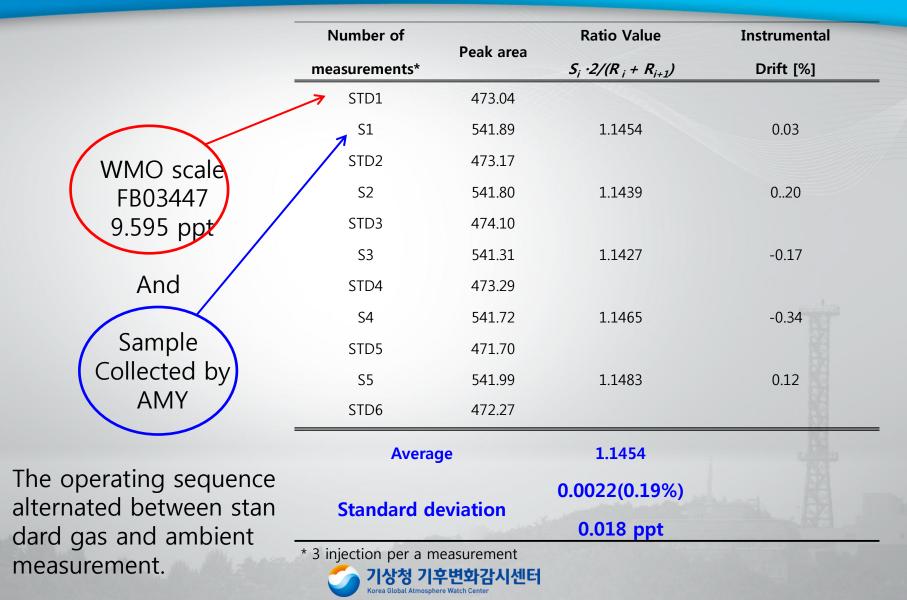
2. Experiments using Standard gases at AMY

History of SF₆ monitoring activities at AMY

Korea Global Atmosphere Watch Center

- **1)** SF₆ has been monitored from 2007 at AMY
- → not that long

2) Western part of Korea downwind area from China and affected by industrial area in Korea


- → can show high concentrations
- 3) one point calibration every 6 hour with KRISS scale
- → not link to WMO scale,
- → not have enough STD to cover the range
- 4) But it has been changed to WMO scale from 2013 → can have problem of continuity from previous data
- 5) using GC-µECD
- → can show non-linear performance

6)Data has been uploaded to WDCGG from 2012

→ can be tracked and changed easily

Instruments performance

Link to WMO scale?

Korea Global Atmosphere Watch Center

550 -	■ NOAA ★ KRISS	Specification	Condition
500 -	y=44.42702x+1.6461	Detector	μECD
450 -	R ² =0.99996	Detector temp.	350 ℃
400 - פי שני 350 -	*		35℃ 75min
а Х		Oven temp.	30℃/min 170℃ 10min
<u>0</u> 300 - 250 -		Column	Alumina-F1 80/100 12ft*1/8 inch SUS
200 -		Sample loop	10 mL
150 -	Norminal analytical Unc. = 0.6%	Carrier flow	P-5, 95 mL/min
	4 6 8 10 12	Sample flow	100 mL/min
	Grav. Conc. (pmol/mol)		

Scale C		$C_{NOAA-scale}$	$C_{calibrated}$	Residual	
Scale	Cyl. No.	[pmol/mol]	[pmol/mol]	[pmol/mol]	[%]
	FB03441	3.946	3.929	0.017	0.44
NOAA	FB03443	5.920	5.933	-0.013	-0.22
Scale	FB03444	7.972	7.992	-0.020	-0.25
	FB03447	9.595	9.587	0.008	0.09
	FB03450	11.887	11.879	0.008	0.07
KRISS standard	D068069	8.164	8.186	-0.022	-0.27

The difference between WMO and KRISS is within the compatibility goal 0.05 ppt

One point calibration?

Korea Global Atmosphere Watch Center

Calibration method	Multi-point	Two-point	One-point [KIT]	Difference	
Calibration method	(nominal value)			multi-1point	multi-2point
Concentration of CRMs (NOAA)	3.9~11.9	8, 9.6	8 [9.6]		
#D068069 (KRISS)	8.173	8.169	8.164	<mark>0.009</mark> [0.12%]	0.005 [0.06%]
DS-13 (KIT)	10.019		[10.026]	<mark>-0.007</mark> [-0.07%]	
DS-19 (KIT)	10.166		[10.173]	<mark>-0.007</mark> [-0.07%]	

One point calibration is reliable but

Pros and Cons

-get more samples (because AMY operating sequence CRM-S1-S2-S3-S4-S5-CRM..) -use as a target tank concept

-chose the standard gas which has similar with targeting value -miss certain level high or low

Example of an wrong calibration case

Korea Global Atmosphere Watch Center

	Low	Mid	High	
NOAA	6.412	6.588	6.606	
КМА	6.3	6.5	6.6	
KMA-NOAA	-0.112	-0.088	-0.006	
Specification	Condition			
Detector	μECD(G1530A)			
Detector temp.	350 ℃			
Oven temp.	35℃			
Column	Alumina-F1 80/100 12ft*1/8 inch SUS			
Sample loop	20.5 mL			
Carrier flow	P-5, 95 psi			
Sample flow	^{100 mL/min} Ta			
	KMAKMA-NOAASpecificationDetectorDetector temp.Oven temp.ColumnSample loopCarrier flow	NOAA6.412KMA6.3KMA-NOAA-0.112Specification-0.112DetectorµDetector temp.µOven temp.Alumina-F1 8Sample loopCarrier flow	NOAA 6.412 6.588 KMA 6.3 6.5 KMA-NOAA -0.112 -0.088 Specification -0.112 -0.088 Detector -0.088 -0.012 Detector -0.012 -0.012 Column -0.012 -0.012 Sample loop -0.012 -0.012 Carrier flow -0.012 -0.012	

WMO RR: 5; Circuit: 1 [CC114953] (6.412) 0.4 895921 (6.588) Lab minus NOAA (ΔSF6, ppt) H [CC86204] (6.606) 0.2 0.0 -0.2 Created: 2013-11-12 GLOBAL ATMOSPHERE -0.4WATCH true to 20,00,00 15010,081 12000-101 120.001 12011-081 1202044 12012-091

But one point calibration with 8.50 ± 0.03 ppt <u>Targeting</u> levels are between 6.4 to 6.7 ppt though

These results were published..

Korea Global Atmosphere Watch Center

기상청ਛ਼਼ 🚑 GA

-as "Guideline for the analysis of SF₆ at ambient level using GC-micro ECD(Korean version)

To check your system performance and analysis method

1)The diagnostic procedure of the analysis system to secure test conditions2)Test method

-English version will be published within this year

Korea Global Atmosphere Watch Center

3. Next Step of WCC-SF₆

Korea Global Atmosphere Watch Center

Main aims WCC-SF₆ pursue are Traceability and compatibility

-comparison(next presentation from KRISS)

Various monitoring method Calibration method Log book

-Round Robin Test/ Inter-comparison experiments Check your system and performance

> -Education courses(discussion session) Improve your system and performance

Thank you

