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Trends and seasonal cycles in the isotopic
composition of nitrous oxide since 1940
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“Fertilizer use responsible for increase in nitrous oxide in
atmosphere” UC Berkeley News April 2, 2012
“Fertilizer linked to greenhouse gas rise” United Press International April 2,

— UPlcom

OVER, 100 YEARS OF JOURNALISTIC EXCELLENCE

"Confirming that the N,O increase is largely due to fertilizer.”
is not a surprise! There are "much more” which are difficult to
distill down to a press release....



Implications for Trends in the Relative Contributions

of Microbial N,O Production Processes:
Learning from Measurements of the Atmospheric N,O
Isotopic Compositions since 1940
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IPCC (2007) “Warming
IS unequivocal, and most
of the warming of the
past 50 years is very
likely (90%) due to
Increases in greenhouse

gases.”

Kyoto Protocol

“The greenhouse gases
are CO,, CH,, , SFy,
HFCs, and PFCs”

@ Report of the Inte Wml I'Bncl on Climate Change | Xip
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N,O Sources and Sinks
Greenhouse gas and ozone depleting substance

hy 0('D) O

NZO 0% NO hy NO,

Stratosphere N, |
~ 90%

H

Troposphere

N,O

NH,— NH,OH— NO,— NO;’ Nitrification

| 1 Nitrifier
NO— N,O
..... N0 2 Denitrification

fgs Denitrification =~ NO,—NO— N,0—N,O
1

2" Denitrification  N,O—N,



Increasing N,O concentrations
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» Continuing imbalance between sources and sinks over time;
a microbe-human link!



Global N,O Budget
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« Currently, sorcs exceed sinks by ~ 3 to 5 TgNyr!
« Large uncertainties (z 50% or worse) and qualitative understanding
in source fluxes

:> An additional tool: Stable isotopic compositions



Isotopic composition of N,O

» Relative abundances: @ @ @

IANNIO (mass 44) : 94 %
I4ANIBNICQ, BNNO (mass 45) : 04 %
IAN4NI8O (mass 46) : 02__ %

« Diffusion, Phase Changes, Chemical Reactions (including metabolic
reactions) act to alter the relative abundances — typically in the decimal
places noted in red above ! “Isotope Effects” “Isotope Fractionation”

=) Distinct isotopic signatures of smks and sources are
flngerpr/ntsl E )




Natural vs. Agricultural soils

Amazon National Forest, Brazil vs. Fertilized Corn Field in Venezuela
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NITROGEN CYCLE
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If we have significant contribution of global fertilization to the
observed increase in N,O concentration, we could expect a
decreasing trend in isotopic compositions



Trend in atmospheric N,O isotopic compositions:
Investigating “integrated” N,O sources
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» Isotopic compositions of N,O (580, 5'°N, 5°N¢, 5°NP) measured by

continuous-flow IRMS at UC Berkeley

Park et al, Nature Geoscience, 2012



Observed trend in N,O isotope

composition for the last 65 years >
s
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> Significant negative trends: Atmospheric ~c

N,O is increasingly depleted in >N and
180, as expected from light sources.
N,O “Suess effect”
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Natural vs. Anthropogenic N,O sources?
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Park et al, Nature Geoscience, 2012



Two Box Model
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Park et al, Nature Geoscience, 2012



Two Box Model
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Model Summary: Implied Global Averages

Linear Trend

(%o/y) Oant (70) Opar (%0)

Deseqsonolized Box Model Box Model
Archive Data

Isotopologue

515N -0.035 (+0.002) 156 (+1.2) -5.3(+0.2)

5180 -0.022 (£0.004) 32.0 (1.3 32.0 (£0.2)
S1ON« -0.026 (£0.013) -7.6 (£6.2) -3.3 (£1.0)
O>NP -0.046 (+0.015) -20.5 (£7.1) -7.5 (£1.1)
Site Preference | +0.028 (+£0.028) 13.1 (£9.4) 42 (£1.5)

» The trends imply an anthropogenic source that is
isotopically lighter than the average of the natural
sources, consistent with agricultural emissions of N,O
playing a large role.

Park et al, Nature Geoscience, 2012



Nitrification vs. Denitrification ?



NB

NOL
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Nitrification vs. Denitrification

 Pure bacteria cultures in lab

401 Nitrifier "Site Preference” (SP)
— 815Noc _ 815NB
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Denitrification
10F nitrifier M. capulatus, N. europaea, N. multiformis, M. trichosporium,
I Denitrifier P. chloropaphis, P. aureofaciens, P. stutzeri, and P. denitrificans
0 % §_ [Stuka et al., 2003, 2006, Ostrom et al., 2007]

) “SPs of ~33%o and ~0%. are characteristic of
nitrification and denitrification, respectively, and provide
a basis to quantitatively apportion N,O" - Stuka et al., 2006

(We refer to nitrification as the oxidation of ammonia, whereas,
denitrification refers nitrate or nitrite reduction regardless of whether or
not reduction is carried out by nitrifying or denitrifying bacteria)




Model Summary: Implied Global Averages

Linear Trend

Isotopologue (eo/yr) 6ANT (760) 8NAT (%60)
Deseasonalized Box Model Box Model

Archive Data
515N 0.035 (£0.002) | -15.6 (+1.2) -5.3(+0.2)
5180 10.022 (+0.004) 32.0 (+1.3) 32.0 (+£0.2)
N -0.026 (£0.013) -7.6 (£6.2) -3.3 (£1.0)
S1ONB -0.046 (£0.015) -20.5 (£7.1) -7.5 (£1.1)

Site Preference

+0.028 (+0.028) 13.1 (£9.4) 4.2 (+1.5)

SP of anthropogenic N,O > SP of natural N,O




Estimates of the relative contributions of nitrification and
denitrification to global microbial N,O production

(1) SPyar = Fie narSPuic T (1-Fyic nat) *SPpenic = 4.2£1.5 %0
SPant = Fyie ant SPyie + (1'FNit_ANT)'SPJFenit =13.1£9.4 %o
@ SPy;. = 33+5%0 SPpepnic = 0+5%o0

Fraction of Nitrification in Anthropogenic N,O (Fy;; ant) = 40(£29)%;
Fraction of Nitrification in[Natural N,O (Fyit nat) = 13(£5)%

« Nitrification fraction in preindustrial time

(2) Given Py, = 11.1(£5) TgNyr! and P,y = 6.6(£5) TgNyr!
FNit_Total — (FNit_NAT'PNAT + FNit_ANT'PANT)/ (PNAT + PANT)
=231+13 %

The fraction of all N,0 from the nitrification is 23(%13)% at
the present time.



Estimates of the relative contributions of nitrification and
denitrification to global microbial N,O production

B | The relative contribution of nitrification versus
denitrification to global microbial N,O production has
increased by ~10% from preindustrial times to the present.

Some caveats:

|. Al N,O is produced by nitrification and denitrification.

Il.  SP has not been altered by N,O reduction and fungal activities.

lll. Bacteria culture measurements of SP during N,O production from
nitrification (33+5%o) vs. denitrification (0+5%o) are globally
relevant. Oceanic and soil bacteria behave similarly.

> Process-based observations of N.,O isotopic compositions produced
from oceanic bacteria at higher precision must help further guantify
how N,O production processes have changed over time.
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@ \/Increasing trend in the N,O site preference (SP) suggests that the
relative contribution of nitrification to global microbial N,O
production has increased from 13% in 1700 to 23% in 2005, in
combination with the microbial SP values.

v'Seasonal and interannual variations in N,O isotopic compositions
are detectable, and contribution of oceanic source component to
the N,O variations may be inferred from the seasonality.

\/Additional long-term observations of N,O isotopic compositions at
higher precision must help further quantify how N,O production
processes have changed over time.




» Increase of greenhouse gases due to human activities has and will

continue to have an impact on climate; while important details remain
to be worked out.

More observations and analysis of natural greenhouse gases and their
isotopic compositions at higher precision must help complete our
mechanistic understanding of their biogeochemical cycles.

ANGRY BEAST " By addlng gr'eenhouse gases
to the atmosphere we are
poking an angry beast!”

— Wallace Broecker
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N,O Isotopes

_ Stratosphere
Atmospheric N,O at surface
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From Rahn & Wahlen 2000

Light sources:

Enzymatic microbial processes
in soils & oceans

Burning and manufacturing sources:
Residual N,O of burning plumes is
slightly depleted, but similar to
atmospheric N,O

Heavy sinks:
Photolysis and reaction w/O('D)

in stratosphere (large kinetic

isotope effect) @

“Top-down approach”

Implied global average
for surface sources

» Isotopic compositions of IN,O sources are left as the remaining
largest uncertainties in the global N,O isotope budget.



Isotopic composition of N,O

* Measure on an isotope ratio mass spectrometer the mass-to-charge ratios
45/44 and 46/44 for N,O*

("SNI'N) gample in parts per thousand

O1°N = { — 1} *1000 or “per mil" = %o
(NF*N) st And similarly for §180...

“Site-Specific” Isotopic L ion beam

Composition of N,O |

000"

» Measure the mass-to-charge ratio 31/30 for A
_ i 11 heavier atom
the NO* fragment ion from N,O* lighter atom 11 ormolecule

or moleculel '«/
Site Preference (SP) = §15N® — §15NB  ion detectors UUU

444546

==) (515N 5180, 515N and 515N8




