Preliminary Results of CO2 Retrievals from Ground-based Solar Absorption FTIR Spectrometer and its Validation

Tae-Young Goo, Young-Suk Oh, Mi-Lim Ou and Young-Hwa Kim

Global Environmental System Research Division National Institute of Meteorological Research, KMA

What is FT-IR?

◆ FT-IR (from wikipedia)

- Fourier Transform InfraRed spectroscopy is a technique which is used to obtain an infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a solid, liquid or gas. An FTIR spectrometer simultaneously collects spectral data in a wide spectral range.

Atmospheric Emitted Radiance Interferometer

IFS-125HR with solar tracker

Goal

Validation of satellite-based greenhouse gases by using ground-based solar absorption FT-IR

IFS-125HR		launched on Jan 23 2009 GOSAT	
	IFS-125HR	GOSAT-FTS	
Band	9000~16,000 cm ⁻¹ (Si Diode Detector)	12,900~13,200 cm ⁻¹ (Si Diode Detector)	
	3,800~12,800 cm⁻¹	5,800~6,400 cm ⁻¹ (InGaAs Detector)	
	(InGaAs Detector)	4,800~5,200 cm ⁻¹ (InGaAs Detector)	
Spectrum Resolution	0.2 cm ⁻¹	0.2 cm ⁻¹	
Temporal Resolution	Every 2~3 min.	Every 3 days	

Background

Total Carbon Column Observing Network (TCCON)

 ✓ In-situ measurement has high accuracy and sensitivity on CO2 concentration in the troposphere. But special resolution is not enough.

✓ Satellite-based CO2 has global coverage but its total column measurement is insensitive to large CO2 variability.

✓ It is difficult to obtain significant results from direct validation between satellite and in-situ measurements.
✓ In this regard, ground-based FTS, which has similar optics and sensors to those of CO2 observing satellite, is the best way to validate satellite-based CO2.

 ✓ It is necessary to calibrate FTS CO2 using aircraft observation in order to compensate for insensitivity on CO2 variation in the troposphere.

Activities on Remotely-sensed CO2/CH4 Validation

- Period/Site: 2010~present / Anmyeondo (KGAWC)
- Instruments: Emission FT-IR, Absorption FTS
- Observations: Aircraft observation with CRDS, Radio sonde

Measured spectra

Modulation Efficiency (ME) and Spectrum Fitting

- ♦ ME \geq 98% indicates measurement CO2 error \leq 0.1%.
- \clubsuit ME=99.2% at the OPD of 45 cm⁻¹ is corresponding to the error of 0.035%.

Spectrum fitting

- Good agreement between measured and simulated spectra

CO2 Retrieval Algorithm

Post process

Gas	Center Frequency [cm ⁻¹]	Window Width [cm ⁻¹]	Spectral Region [cm ⁻¹]	Interfering Gases
O ₂	7885.00	240.00	7765 - 8005	H ₂ O
CO_2	6220.00	80.00	6180 - 6260	H ₂ O, HDO, CH ₄
	6339.50	85.00	6297 - 6382	H ₂ O, HDO

o Spectrum fitting module

- MkIV spectra(balloon, aircraft, ground-based obs.), ATMOS spectra
- Ground-based FT-IR spectra analysis

Data

- Spectra measured from FTS
- ♦ 6 hourly NCEP Reanalysis
 - 2.5 x 2.5 grid, 17 pressure levels
 - Temperature, Geopotential height, Specific humidity, Pressure on the tropopause
- Pressure on the level of FTS
- 🔷 a priori CO2 profile
 - based on MkIV balloon and ACE profile (30~40N, 2003~2007)
 - replaced an empirical model based on fits to GLOBALVIEW data (~10 km)
 - an age-dependent profile in the stratosphere
- Averaging Kernel
- Spectroscopy
 - Many atmospheric line lists come from HITRAN 2004 and 2008

CO2 line lists in 4300~7000 cm⁻¹ (Toth et al. 2008)

FTS CO2 against In-situ CO2 (1)

- Period: 24 May 2013
- Data Descriptions
 - In-situ CO2 at the KGAWC (CRDS, 5 seconds)
 - Aircraft-based CO2 (CRDS, 0.15~5 km, 0.3 seconds)
- Results
 - While in-situ measurements show considerably large CO2 variability, FTS CO2 doesn't as expected.

FTS CO2 against In-situ CO2 (2)

- Period: May~June 2013
- Data: hourly-averaged CO2 and its sigma
- Results
 - Large differences were found even though hourly-averaged CO2 has small standard deviation.

FTS vs FTS

- Data description
 - FTS CO2 at Anmyeondo from May to June 2013
 - FTS CO2 at Tsukuba from April 2009 to January 2013
- Results
 - Time variation and concentration level of FTS CO2 at Anmyeondo look reasonable.

Summary and Conclusion

- It is difficult to obtain significant results in the comparison of ground-based in-situ CO2 and remotely-sensed total column CO2 measurement because of their different sensitivities on CO2 variability in the troposphere.
- Nevertheless, in-situ CO2 measurements are necessary to assess the quality of remotely-sensed CO2 measurements.
- Long-term comparison of background CO2 concentration from the GAW station is desirable to validate FTS and satellite CO2.
- Although NIMR FTS CO2 needs correction for dependence of solar zenith angle and CO2 concentration in the troposphere, preliminary FTS CO2 looks reasonable concentration level and temporal variation so far.
- Aircraft observation plays a key role to compensate insufficient sensitivity of FTS CO2 in the troposphere.

Thank you for your attention

Acknowledgement

- This study is supported by the Development and Application of Methodology for Climate Change Prediction [NIMR 2012-B-2].

- In-situ CO2 observation data were produced by the Korea Global Atmosphere Wa tch Center.

Instrument

- ◆ IFS-125HR with Solar Tracker (Bruker, Germany)
- Specification
 - Spectrum range: 16,000~3,800 cm⁻¹ (0.63~2.63 μm)
 - Spectrum resolution: up to 0.0063 cm⁻¹
 - Temporal resolution: about 2 minutes
 - Detector/Beam splitter: InGaAs, Si-Diode / CaF2
 - Retrieval: CO2

