

CarbonTracker-Asia

A tool to quantify CO2 uptake/release focused on Asia

ChunHo Cho¹, Gil Lee¹, Johan Lee¹, and Andrew R. Jacobson²

¹KMA National Institute of Meteorological Research

²NOAA Earth System Research Laboratory

The 5th Asia-Pacific GAW Workshop on Greenhouse Gases 24 Oct. 2013, Jeju, Korea

CarbonTracker as a scientific tool

To improve our understanding of how carbon uptake and release from land ecosystems and oceans are responding to a changing climate.

CarbonTracker as a policy support tool

To provide an independent check on emissions accounting, estimates of fossil fuel use based on economic inventories.

To provide feedback to policies aimed at limiting greenhouse gas emissions.

Concept of CarbonTracker

Transfer from observations (concentrations) to information (fluxes at sources & sink)

U.S. Department of Commerce | National Oceanic & Atmospheric Administration | NOAA Research

CarbonTracker - CT2010

Information

Home

- What's New
- FAQ
- Documentation
- Project Goals
- Version History
- Collaborators
- Tutorial

Results

- Executive Summary
- Fluxes
 - Maps
 - Time Series
- Observations
 - CO₂ Time Series
 - Aircraft Profiles
 - Interactive Visualization
- CO₂ Weather
 - Maps
 - Movies
- Additional Products
 - Evaluation
 - Other CO₂ Movies
- Download
 - 3-D Mole Fractions
 - Fluxes
 - Preprocessed Obs
- Source Code
- Archives
- ESRL Observations

Get Involved

- Your Suggestions
- E-mail List
- Subscribe

Unsubscribe

What is Carbon Tracker?

A system to keep track of carbon dioxide uptake and release at the Earth's surface over time. [read more]

Who needs Carbon Tracker?

Policy makers, industry, scientists, and the public need CarbonTracker information to make informed decisions to limit greenhouse gas levels in the atmosphere. [read more]

What does Carbon Tracker tell us?

North America is a source of CO_2 to the atmosphere. The natural uptake of CO_2 that occurs mostly East of the Rocky Mountains removes only ~30% of the CO_2 released by the use of fossil fuels. [read more]

What's new in this release of Carbon Tracker? NEW!

The 2010 release of CarbonTracker ("CT2010") includes observations and flux estimates through the end of 2009. The addition of several new observational data sets we feel results in more accurate estimates of fluxes. [read more]

Other Carbon Trackers

- CarbonTracker Europe
- CarbonTracker-Asia
- CarbonTracker Methane (under construction)
- CarbonTracker Australasia (under construction)

2007 Carbon Tracker PNAS publication

Carbon Tracker is a NOAA contribution to the North American Carbon Program

CarbonTracker CO₂ weather for June-July, 2008. Warm colors show high atmospheric CO₂ concentrations, and cool colors show low concentrations. As the summer growing season takes hold, photosynthesis by forests and crops draws concentrations of CO₂ down, opposing the general increase from fossil fuel burning. The resulting highand low-CO₂ air masses are then moved around by weather systems to form the patterns shown here. [More on CO₂ weather]

CarbonTracker-Asia

1. Double-nested mesh (globe: 3°x2°, Asia: 1°x1°).

2. Measurements collected JMA 3 GAW sites

Typhoon as simulated by CT-Asia

Column CO2 concentration 2002082400

370

367

373

-1150

-47

0

47

1150

NEE (24 AUG - 1 SEP)

2006 1 1

The daily concentration of CO₂ as simulated by CarbonTracker in 2006

Sichuan Basin (四川盆地)

- Chongqing (population 29,000,000)
- Chengdu (population 14,000,000)

Uncertainty reduction by JMA 3 GAW observations (2000-2009)

Latitudinal distributions of CO₂ Concentration

Masured and simulated surface CO_2 concentration as a function of latitude at observation sites.

CO₂ Growth Rate & Emission

Observation (NOAA) : CO₂ growth rate globally averaged over marine surface sites Simulation (CT) : CO₂ growth rate globally averaged over all grid points

Global Annual Budget of CO₂ Fluxes

On average, 40% of the total CO_2 emissions each year between 2000 and 2011 remained in the atmosphere, but this fraction is subject to large interannual variability, which is caused by corresponding strong variations in natural CO_2 uptake, globally, from year to year.

Global Growth Rate of CO₂ Concentration

Correlation coefficient b/w

The interannual variability of growth rate is primarily dominated by terrestrial ecosystems rather than any other components.

Correlation between anomalies in annual global mean biosphere flux (NEE) & climate variation

NEE (Net Ecosystem Exchange)

Fate of Global CO₂ Emissions (2002-2011)

CO₂ Uptake or Release for each Country (2001-2011)

(Tg CO₂ /yr)

On-going Plan

to integrate observations in CarbonTracker to verify the satellite retrievals by aircraft, FTS, and tower

CarbonTracker Flow Chart

5. Analyzed 3-D CO₂ concentration

2006 1 1

The daily concentration of CO₂ as simulated by CarbonTracker in 2006

Sichuan Basin (四川盆地)

- Chongqing (population 29,000,000)
- Chengdu (population 14,000,000)

Global Growth Rate vs. Flux Anomaly

Correlation coefficient b/w						
	FF CO2	Fires CO ₂	Bio CO2	Ocean CO2		
FF flux anomaly	0.55	-	-	-		
Fires flux anomaly	-	0.80	-	-		
Bio flux anomaly	-	-	0.91			
Ocean flux anomaly	-	-	-	0.94		

CarbonTracker-Asia Result

2001-2009 CO₂ Uptake or Release for each Country

Rank	Country	Fossil Fuel	Fire	Biosphere	Net Flux
1	UNITED STATES OF AMERICA	5794	97	-1627	4264
2	CHINA (MAINLAND)	5749	42	-761	5075
3	RUSSIAN FEDERATION	1589	455	-3745	-1701
4	INDIA	1478	46	13	1537
5	JAPAN	1265	0	-35	1230
6	GERMANY	797	0	-16	781
7	UNITED KINGDOM	555	0	-11	544
8	CANADA	554	150	-1330	-626
9	REPUBLIC OF KOREA	494	0	-10	484
10	ITALY	470	1	-12	459
11	ISLAMIC REPUBLIC OF IRAN	449	1	-17	433
12	MEXICO	443	29	-105	367
13	FRANCE	424	0	-34	390
14	SOUTH AFRICA	417	37	-42	412
15	SAUDI ARABIA	368	0	0	368
16	BRAZIL	362	791	-310	843
17	AUSTRALIA	354	448	-507	295
18	SPAIN	335	2	-6	331
19	INDONESIA	324	378	76	778
20	UKRAINE	318	8	-17	309
	NORTH KOREA	80	1	-17	64

[Tg CO₂ yr⁻¹]

Average natural flux (biosphere + ocean + fire) & Fossil fuel flux estimated from CT-Asia [2001-2009] [PgC/yr]

Transcom regions (http://www.purdue.edu/transcom/)

The uncertainty listed is the one standard deviation from the ensemble Kalman filter estimate. [the number of ensemble member : 150]

Transcom Region	Natural flux	Fossil Fuel
North America Boreal	-0.24 ± 0.40	0.01
North America Temperate	-0.55±0.46	1.84
South America Tropical	0.18±0.56	0.10
South America temperate	0.05±0.32	0.16
Northern Africa	0.02 ± 0.28	0.16
Southern Africa	0.11±0.36	0.13
Eurasian Boreal	-0.85±0.96	0.18
Eurasian Temperate	-0.27±0.43	2.79
Tropical Asia	0.21 ± 0.20	0.57
Australia	-0.02±0.12	0.11
Europe	c -0.17±0.68	1.55
North Pacific Temperate	-0.42 ± 0.44	0.09
West Pacific Tropics	0.02 ± 0.09	0.00
East Pacific Tropics	0.31±0.22	0.00
South Pacific Temperate	-0.62 ± 0.35	0.00
Northern Ocean	-0.26±0.20	0.01
North Atlantic Temperate	-0.38±0.43	0.03
Atlantic Tropics	0.17±0.16	0.04
South Atlantic Temperate	-0.21±0.24	0.00
Southern Ocean	-0.30 ± 0.33	0.00
Indian Tropical	0.19±0.23	0.02
South Indian Temperate	-0.66 ± 0.43	0.00
Global Land	-1.54±1.62	7.60
Global Ocean	-2.16±1.01	0.20
Global Total	-3.70±1.91	7.79

Uncertainty reduction provided by inverse method for the estimation of CO₂ fluxes (2000-2009)

The extent to which the flux field is modified by the inversion can be shown the error reduction defined as:

 $[1-\sigma(\text{posterior})/\sigma(\text{a priori})] \times 100$

About 10 percent of the data collected are usable for calculating column abundances due to sky conditions.

IPCC AR5

Annual changes in CO₂ emissions & GDP for Korea

How will Society Reduce Greenhouse Gas Emissions?

Source: James Butler (NOAA/ESRL/GMD)

This independent measure of effectiveness of any policy, provided by the atmosphere itself (where CO2 levels matter most!), is the bottom line in any mitigation strategy.

CarbonTracker Flow Chart

5. Analyzed 3-D CO₂ concentration