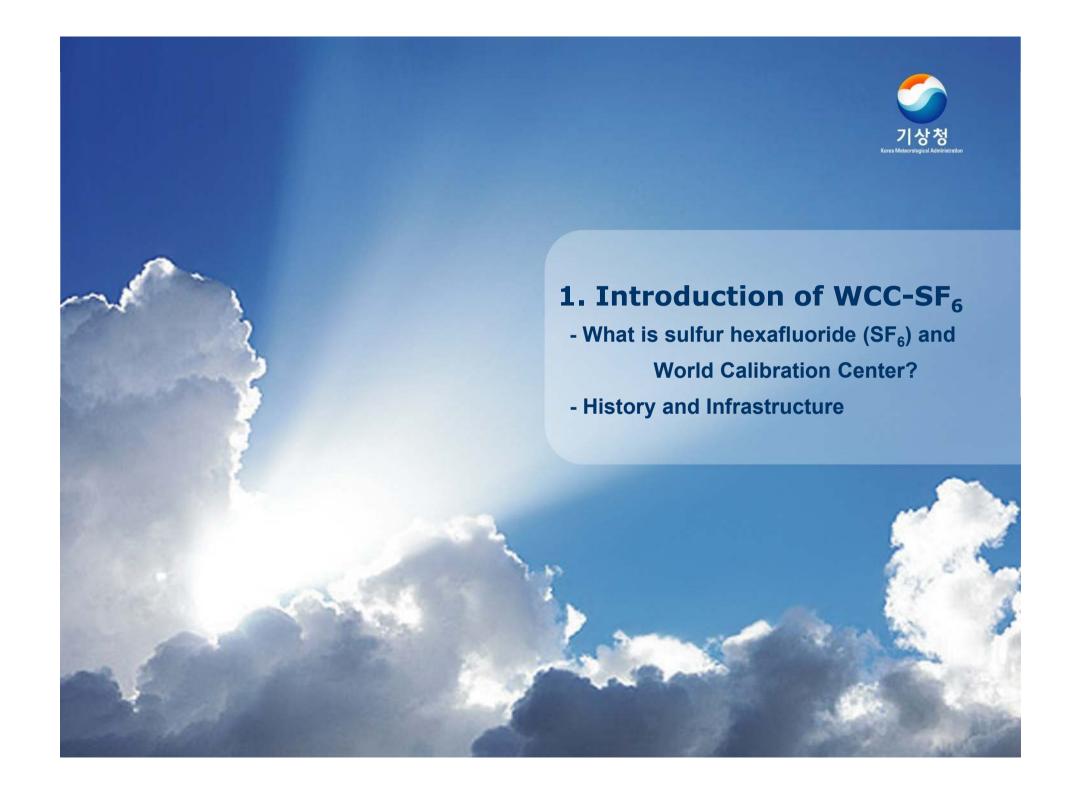
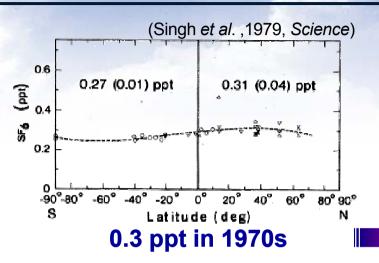

Current Activities of World Calibration Center for SF₆

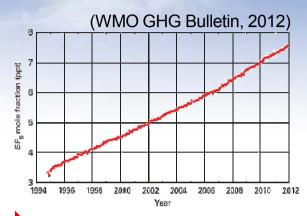

<u>Deullae MIN¹</u>, Haeyoung LEE¹,

Dong Min Moon², Jeong Sik Lim², and Jeongsoon LEE²

¹Korea GAW Center, Korea Meteorological Administration

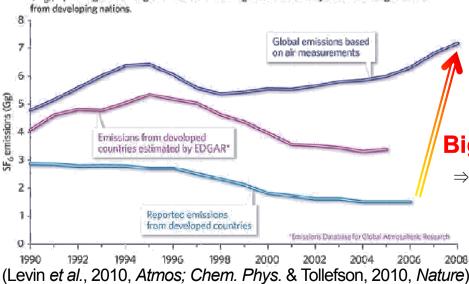
²Korea Research Institute of Standards and Science





marodaccion of wee or 6

Sulfur Hexafluoride, SF₆

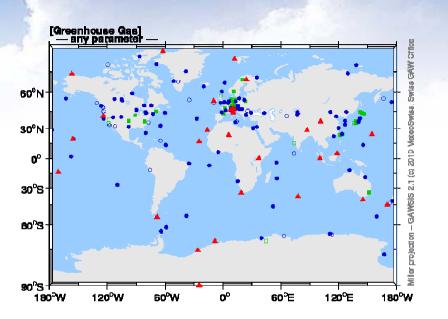


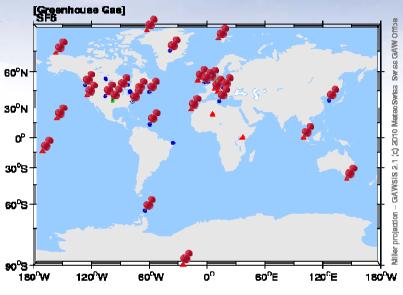
7.5 ppt in 2011

KEEPING TABS ON A GREENHOUSE GAS

Developed countries may be reporting only about half of their emissions of sulphur hexafluoride (SF_a), a potent greenhouse gas. Much of the recent global increase may be due to rising emissions from developing pations.

Aluminum industry
Semiconductor manufacturing
Electrical transmission equipment


Big difference of SF₆ emissions


⇒ Observation is important to verify the global and regional emissions

marodadan or mac or 6

Observation Stations in WMO/GAW Programme

Region Species	Total	Africa	America	Asia	SW Pacific	Europe	South Pole
Greenhouse Gases	189	13	48	40	16	59	13
SF ₆	40	3	16	1	5	12	3

(GAW Station Information System at http://gaw.empa.ch/gawsis/)

WMO/GAW Quality Assurance System

Quality Assurance /
Science Activity Center

Central Calibration Laboratory

Data Compatibility

World Data Center

World Calibration Center

Regional Calibration Center

Missions of WCC

- ✓ To develop and publish quality control procedures required to support the quality assurance of measurements
- ✓ To prepare and maintain laboratory standards which are traceable to the WMO reference scale
- ✓ To perform intercomparison campaigns, system/performance audits, and provide a training and long-term technical help for those who work for WMO/GAW stations

marodia caroni or macroti 6

History of WCC-SF₆

- Agreement with mutual cooperation between KMA and KRISS (2010)
 - ✓ Climate change
 - 1. Greenhouse gas analysis for aircraft air samples (NIMR)
 - 2. WCC establishment
 - ✓ Earth magnetic field

2012 KMA
Proposal

SL

Memorandum of Understanding

2007

2005

2011

2002

Developing SF₆ measurement technique

bet Sering Hand KRISS measurement techniques &

Between

the Korea Meteorological Administration of the Republic of Korea

and

the World Meteorological Organization

Related to the Provision of a World Calibration Centre for Sulphur Hexafluoride (SF₆) to the World Meteorological Organization Global Atmosphere Watch Programme

The Korea Meteorological Administration (KMA) of the Republic of Korea and the World Meteorological Organization (WMO) (hereinafter jointly referred to as the "Parties").

Considering that

the Global Atmosphere Watch Programme (GAW) of the World Meteorological Organization (WMO) has a unique long-term international framework that provides the technical basis for integrated observations, analysis and assessment of atmospheric chemical composition;

Infrastructure

Cylinder and evacuation system

Analysis system and standard gases

Analysis system(GC/ECD)

Standards (NOAA-2006)

Preparation of compressed dry air

WMO/GAW Quality Assurance System

Quality Assurance /
Science Activity Center

Compatibility

World Calibration Center

Regional Calibration Center

Missions of WCC

- ✓ To develop and publish quality control procedures required to support the quality assurance of measurements
- ✓ To prepare and maintain laboratory standards which are traceable to the WMO reference scale
- ✓ To perform intercomparison campaigns, system/performance audits, and provide a training and long-term technical help for those who work for WMO/GAW stations

micreomparison between och ana woo or 6

Outline of Intercomparison

Schedule

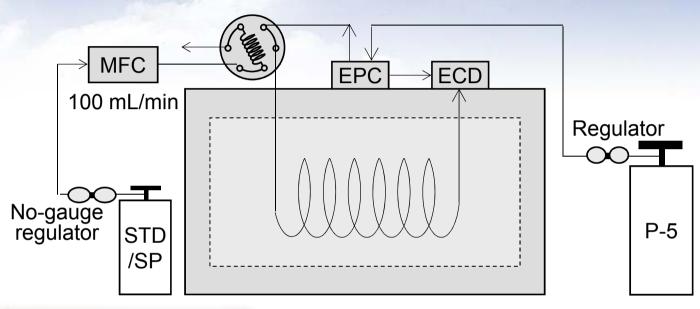
- ✓ Suggestion of comparison by CCL: 28 Nov., 2012
- ✓ Sending samples to WCC: Last week of Jan., 2013
- ✓ Arrival of samples at WCC: 5 Feb., 2013
- ✓ Sample analysis by WCC: 6~27 Feb., 2013
- ✓ Submission of result to CCL: 15 Mar., 2013
- ✓ Sending back sample to CCL: 9 May, 2013

FB03560 & FB03054

> Reference Gases

✓ Traceable to the WMO mole fraction scale (NOAA-2006)

Cylinder Number	FB03443	FB03444	FB03447	FB03450
SF ₆ Conc. (ppt)	5.920	7.972	9.595	11.887
SD (ppt)	0.017	0.023	0.018	0.020


SF₆ standard gases

mercomparison between oob and was or

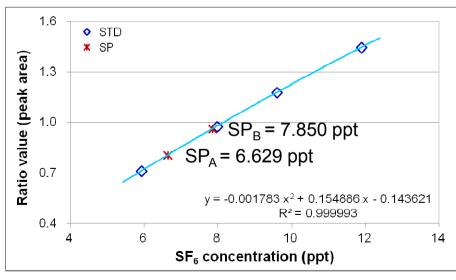
Schematic Diagram of Analysis System

Sample loop (6 mL)

GC/Electron Capture Detector (7890A/G3440A, Agilent, USA)

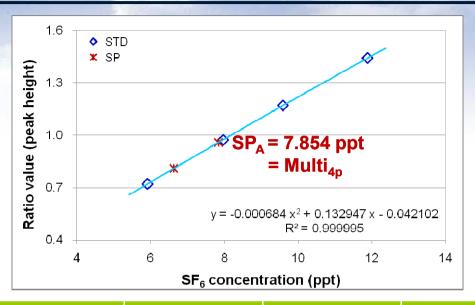
> Analysis Condition

- ✓ Oven temp.: 50 $^{\circ}$ C (or 60 $^{\circ}$ C), isothermal
- ✓ Column: Activated Alumina F-1 (80/100), 4 m length, 1/8" OD (Restek, USA)
- ✓ Carrier gas: 20 mL/min of P-5 (CH₄ 5 % in Ar) with makeup 30 mL/min
- ✓ GC injection method: 6-port gas sampling valve



mercomparison between ode and wee or 6

Measurement Result (4-point calibration)


	Α —	→ B —	A' meth	nod	* Ratio value	of SP(or STD)	= 2*B / (A+A
Cylinder	WS	SPA	WS	STD _{8 ppt}	WS	SPB	WS
Peak area	160.57	128.66	159.17	156.04	160.32	154.54	160.84
Ratio value		0.8048		0.9768		0.9624	
Cylinder	STD _{6 ppt}	WS	STD _{10 ppt}	WS	WS	STD _{12 ppt}	WS
Peak area	113.92	159.58	187.94	159.18	159.28	230.43	159.58
Ratio value	0.7111		1.1793			1.4453	

Cylinder	SF ₆ (ppt)	Ratio value	Cal. SF ₆ (ppt)	Difference (Cal-Ref)
FB03443	5.920	0.7111	5.922	0.002
FB03444	7.972	0.9768	7.964	-0.008
FB03447	9.595	1.1793	9.603	0.008
FB03450	11.887	1.4453	11.885	-0.002
FB03054	6.629	0.8048	1	1
FA03560	7.850	0.9624	/	1

Selection of Calibration Method

1-point Calibration

Standard gas	6 ppt	8 ppt	10 ppt	12 ppt
Cal. SF ₆ (ppt)	7.879	7.861	7.863	7.916
Difference (single-multi _{4p})	0.025	0.007	0.009	0.062

2-point Calibration

Standard gases	6 ppt, 8 ppt	8 ppt, 10 ppt	6 ppt, 10 ppt	6 ppt, 12 ppt
Cal. SF ₆ (ppt)	7.861	7.860	8.869	7.898
Difference (multi _{2p} -multi _{4p})	0.007	0.006	0.015	0.044

3-point Calibration

Standard gases	6 ppt, 8 ppt, 10 ppt	8 ppt, 10 ppt, 12 ppt
Cal. SF ₆ (ppt)	7.861	7.862
Difference (multi _{3p} -multi _{4p})	0.007	0.008

Intercomparison Result

─ Multi-point calibration (4 standard gases ranged 6~12 ppt)

(unit: ppt)

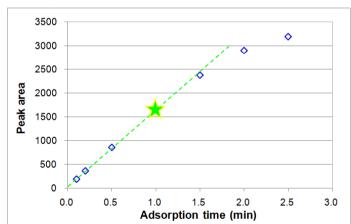
# of meas. Sample	1	2	3	4	5	SF ₆ from WCC [SD]	SF ₆ from CCL [SD]	Difference (WCC-CCL)
FB03054	6.651	6.649	6.629	6.636	6.612	6.635 [0.016]	6.633 [0.012]	+0.002
FB03560	7.841	7.833	7.851	7.828	7.901	7.851 [0.029]	7.885 [0.019]	-0.034

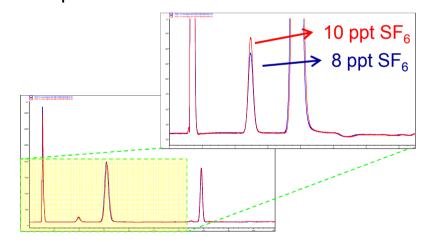
WMO recommended measurement target for SF₆: 0.02 ppt

Two-point calibration (6, 8 ppt)

(unit: ppt)

# of meas.	1	2	3	4	5	SF ₆	SD
Working Standard	8.169	8.212	8.148	8.224	8.165	8.179	0.033




Pre-concentration System

> Analysis Condition

- ✓ Adsorption/Heating temp.: -40 °C / 200 °C
- ✓ Adsorbent: 100 mg of HayeSep D (80/100, Hayes Separation Corp.)
- √ Sample/Standard gas flow: 50 mL/min
- ✓ Adsorption time: 1 minutes

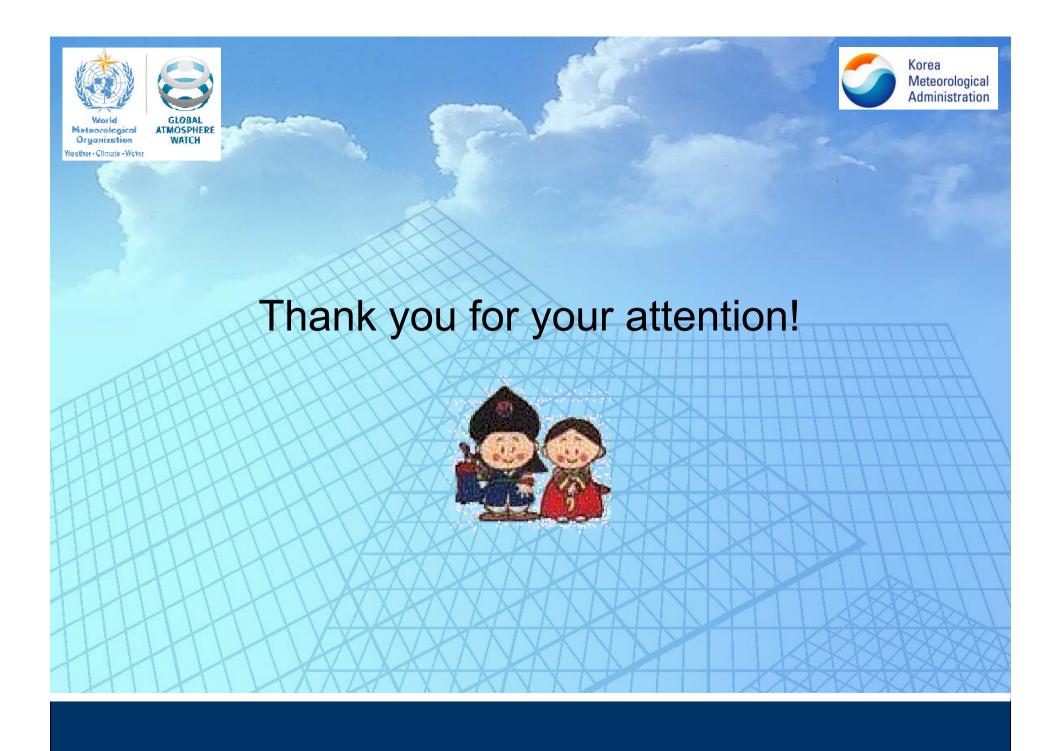
GC without this system

GC with this system

(unit: ppt)

# of meas.	1	2	3	4	SF ₆	SD
WS	8.374	8.388	8.323	8.354	8.339	0.022

Challenges of SF₆



Future Plans

- ✓ To prepare standard operation procedures to maintain laboratory standard gases traceable to the WMO reference scale
- ✓ To develop the measurement guideline for SF₆ observation in cooperation with KRISS
- ✓ To provide the technical training course for GAW stations to enhance their capability building for SF₆ observation
- ✓ To conduct intercomparison campaigns and system/performance audits for stations to improve the quality of observation data
- ✓ To expand the SF₆ observation network including the *in-situ* and/or flask sampling analysis supported by several funding sources

