배경

최근 여러 차례에 걸쳐 기후변화에 관한 정부간 협의체(IPCC)의 평가보고서에서 온실가스 농도가 위험 수준에 이르는 것으로 보고되었음. 인간 활동에 따른 기후변화는 모두가 인정하는 과학적 사실이 되었고, 시급히 해결해야 할 인류의 당면과제가 되었음. 이제 기후변화 원인물질을 줄이고자 하는 국제적인 활동도 한층 강화되고 있음. WMO(국제 기상기구) 프로그램 중 하나인 전지구기후관측시스템(GCOS, Global Climate Observing System)에서는 핵심기후변수(ECVs, Essential Climate Variables)*을 선정하고, 대기, 해양, 육상에 대한 종합적인 관측 정보를 제공하고 있음.

* Essential Climate Variables: GCOS 프로그램에서 지구 기후를 특징짓는 주요 변수를 한정(2010)

필요성

- Post-2020 신기후체제가 출발하는 시점에서 기후변화 원인물질의 체계적 감축 관리를 위한 고품질 기후변화감시 정보가 요구됨.
- 기후변화에 대한 국가적 이해를 위해 한반도와 전지구 규모에 대한 종합적인 기후변화감시 업무 필요성이 제기됨.

목적

- 분산되어 있는 기후변화감시 자료를 통합하여, 대기, 해양, 빙하 등 ECVs에 대한 종합적인 정보 제공
- 기후변화감시 종합 분석 보고서를 통한 정부 부처, 국제협력, 기관 등의 정책 수립 및 의사결정을 위한 정보 제공

기대효과

1. 기후변화 원인·결과·영향에 대한 정보를 효율적으로 파악할 수 있는 수요자 중심 온라인 콘텐츠 정보 서비스
2. 기후변화의 원인·결과·영향에 대한 종합적 감시업무 수행으로 고품질·고부가가치 정보 제공
3. 정부부처, 기관과 공동 활용으로 미래 국가 기후변화 정책 지원
종합 기후변화감시정보 자료 활용 방법 소개 1

대기(대기조성)

온실가스
① 이산화탄소 ... 2
 1) 국내외 연평균농도 .. 2
 2) 국내 지점별 평균농도 ... 3
 3) 최근 5년간 월변화 ... 4
 4) 관측자료 비교 .. 4
② 메탄 .. 5
 1) 국내외 월평균농도 .. 5
 2) 최근 5년간 월변화 ... 5
 3) 관측자료 비교 .. 6
③ 기타 온실가스 .. 6
 1) 육불화황 .. 6
 2) 아산화질소 .. 7
 3) 염화불화탄소류 .. 8
④ 기타 ... 9
 1) 온실가스 농도 비교 ... 9
 2) 온실가스별 복사강제력 .. 9
 3) 온실가스 배출량 .. 10

반응가스
① 일산화탄소 ... 11
② 질소산화물 .. 13
③ 이산화황 ... 14
④ 국내외 도시 반응가스 ... 15

지표복사수지
① 순복사, 직달일사 .. 16
② 연관정보 ... 17

에너지돌
① 에너지돌 광학깊이 .. 18
② 옹스트롬지수 ... 18
③ PM10 ... 19
④ 용결력 수능도 ... 19

성층권 오존
① 국내외 지점별 연평균 오존전량 20
② 국내 오존 연직분포 ... 21

자외선
① 실시간 총자외선지수 ... 22
② 총자외선지수 ... 23
③ 총자외선지수 일최고 단계별 일수 23
④ 자외선 A, B 일자료 ... 24
⑤ 자외선 A ... 24
⑥ 자외선 B ... 25
⑦ 연관정보 ... 26
대기(기상요소)

기온
① 국내외 평균기온 편차 ... 27
② 국내 평균기온 변화율 ... 28
③ 현상 일수 .. 28
④ 연관정보 .. 29

강수
① 국내외 연강수량 편차 ... 30
② 국내 연강수량 변화 .. 31
③ 호우 일수 .. 31

풍향-풍속
① 평균풍속 연월평균 .. 32
② 풍속 계급별 연간 일수 ... 33
③ 평균풍속 분포도 ... 33
④ 지점별 바람장미 ... 34
⑤ 연관정보 .. 34

수증기
① 상대습도 연월평균 .. 35
② 실효습도 계급별 발생일수 36
③ 상대습도 변화율 및 지점별 상대습도 ... 37
④ 연관정보 .. 37

운량
① 전운량 연월평균 .. 38
② 전운량 계급별 변화경향 ... 38
③ 연관정보 .. 40

목차

육상

적설
① 적설 연월평균 ... 41
② 적설 계급별 연간일수 비교 42
③ 지점별 연대별 적설강도 변화 43
④ 지점별 일최심정적설과 눈 현상일수 43
⑤ 연관정보 .. 44

해상

해수면높이
① 국내외 해수면높이 .. 45
② 국내 해수면높이와 상승률 ... 45

해수면온도
① 국내외 해수면온도 .. 46
② 국내 지점별 해수면온도와 기온 47
③ 국내 해수면온도 변화율 분포도 47
④ 연관정보 .. 48

해빙
① 해빙 분포도 .. 49
② 해빙 연변화 .. 50
③ 연관정보 .. 50
해상풍
① 유의파고 평균 및 최고 .. 51
② 유의파고 분포 .. 52
③ 지점별 바람장미 ... 52
④ 과거 풍랑특보일 수 .. 53
⑤ 해수면온도 실황 및 예측 53

자료통계방법
- 온실가스 ... 54
- 반응가스 ... 57
- 에어로졸 .. 58
- 자외선 .. 59
- 대기복사 ... 60
- 성층권 오존 .. 60
- 기상 .. 61
종합 기후변화감시정보 자료 활용 방법 소개

메뉴 소개

1. 각 기후요소에 대한 의미
2. 대표적인 기후요소 최근 자료값
3. 사용자 가이던스 다운로드

주요 기능

① 그래프에 마우스를 올리면 해당 관측값 확인 가능
② 그래프 위 마우스로 영역 설정 시 확대 가능
③ 범례를 클릭하면 그래프 추가 및 삭제 가능
④ 해당 그래프 이미지 및 자료를 각각 png 파일과 csv 파일로 다운로드 가능
의의
지구의 물리·화학·생물학적 균형을 깨뜨려 지구온난화를 유발하는 대표적인 물질을 의미

종류
이산화탄소(CO₂), 메탄(CH₄), 아산화질소(N₂O), 염화블화탄소류(CFCs), 육불화황(SF₆), 과불화탄소(PFCs) 등

온실효과
태양으로부터 유입된 단파장의 복사에너지가 지구 대기권을 통과하여 유입된 후, 장파장의 지구복사로 방출될 때 온실가스에 의해서 흡수됨으로써 지구가 온난화되는 현상

국제 기후협약 규제대상 물질
- 몬트리올의정서(1989년): 염화블화탄소류(CFCs)
- 교토의정서(1997년): 이산화탄소(CO₂), 메탄(CH₄), 아산화질소(N₂O), 수소불화탄소류(HFCs), 과불화탄소(PFCs), 육불화황(SF₆)
- 교토의정서 후속회의(2011년): 삼불화질소(NF₃)

이산화탄소

○ 발생과 소멸
 ■ 발생원: 석탄, 석유, 천연가스 등 화석연료를 태울 때 주로 발생하며, 벌목과 화재, 산불 등의 잔존물 부패 등에서 배출되기도 함.
 ■ 소멸원: 식생의 광합성과정, 해양에 의한 흡수, 성층권 오존과 화학반응에 의한 분해 등으로 소멸

○ 기후변화에 미치는 영향
 ■ 이산화탄소는 지구온난화를 유발하는 주요 원인물질로 인간의 화석연료 소비증가로 배출되는 대표적인 온실가스임.
 ■ 이산화탄소의 전지구 평균 농도는 꾸준히 증가하고 있으며 관측단위는 ppm(part per million, 100만분의 1)임.
 ■ 일반적으로 이산화탄소는 배출되어 대기 중에 머무르는 잔류기간이 100~300년임.
 ■ 모든 온실가스의 전지구 복사강제력은 산업화 이전 시기(1750년 이전)에 비교하여 2.83W/m²에 이르며, 이 중 이산화탄소가 차지하는 전지구 복사강제력은 1.83W/m²(64.3%)에 이르는 것으로 알려져 있음 (IPCC, 2013).

그래프

설명

① 국내외 연평균균농도(위치: 대기(대기조성) ▶ 이산화탄소 ▶ 국내외 연평균균농도)

제목
국내외 이산화탄소 연평균균농도

그림설명
전지구, 안면도, 고산, 울릉도, 독도의 연평균 이산화탄소 농도 변화를 보여주는 그래프

의미
2017년 이산화탄소 연평균농도는 전지구 405.5 ppm으로 산업화 이전 (278.0 ppm) 대비 약 46% 증가했으며, 안면도는 412.2 ppm으로 1999년 371.2 ppm 보다 41.0 ppm 증가함.

업데이트 주기 1회/년
국내 이산화탄소 월평균농도

의미: 안면도, 고산에서 2013년 처음으로 연평균 농도가 400ppm을 돌파하였으며, 지속적으로 증가하고 있음.

업데이트 주기: 1회/년

국내외 이산화탄소 월평균농도

의미: 각 지점에서 이산화탄소 농도가 지속적으로 증가하고 있음.

업데이트 주기: 1회/년

출처: 온실가스세계자료센터(WDCGG)

국내외 이산화탄소 절대증가값

의미: 매년 전년대비 증가폭이 다르게 나타나다 최근 들어 증가폭이 커짐.

업데이트 주기: 1회/년

출처: 온실가스세계자료센터(WDCGG)

② 국내 지점별 평균농도(위치: 대기(대기조성) ▶ 아산화탄소 ▶ 국내 지점별 평균농도)

국내 지점별 이산화탄소 평균농도(안면도)

의미: 지점별 이산화탄소 농도의 일변화 경향, 계절변화, 연변화 경향을 알 수 있음. 안면도 이산화탄소 농도는 장기적으로 증가하고 있으며, 두려운 계절변화를 보이고 있음.

업데이트 주기: 1회/년
그래프

설명

3) 최근 5년간 월변화 (위치: 대기(대기조성) ▶ 이산화탄소 ▶ 최근 5년간 월변화)

- 국내 지점별 최근 5년간 이산화탄소 월변화

- 그래프설명: 최근 5년간 안면도, 고산과 최근 4년간 울릉도, 독도의 이산화탄소 월별 평균농도 변화를 보여주는 그래프

- 의의: 이러한 계절변동은 이산화탄소의 발생원과 흡수원, 주풍 이동에 따른 영향을 알 수 있는 지표가 됨.

- 업데이트 주기: 1회/년

4) 관측자료 비교 (위치: 대기(대기조성) ▶ 이산화탄소 ▶ 관측자료 비교)

- 제목: 이산화탄소 농도의 비교관측(安면도 실시간 - 안면도 플라스크 샘플링)

- 그래프설명: 안면도 이산화탄소 농도의 실시간 관측 자료와 채 1회 플라스크 샘플링 자료(NOAA 중앙예진실질 분석)를 함께 보여주는 그림
 - 지점(기간): 안면도(2014~2017년)

- 의의: 관측자료의 신뢰성을 알아보기 위한 것으로 이산화탄소의 두 분석 자료는 좋은 상관관계(R=0.97)를 보임.

- 업데이트 주기: 1회/년

- 제목: 이산화탄소 농도의 비교관측(OCO-2위성 - 안면도 FTS)

- 그래프설명: TCCON의 안면도 FTS와 NASA 온실가스 관측 전용 위성 OCO-2의 XCO₂ 농도 변화를 보여주는 그림
 - 기간: 2014년 4월~2017년 12월

- 의의: FTS와 OCO-2의 XCO₂는 0.936의 좋은 상관관계를 보이며, 두 값을 통해 대기 중의 CO₂의 농도가 증가함을 확인함.

- 업데이트 주기: 1회/년
메탄

발생과 소멸
- 발생원: 습지와 해양, 식생 등에서 자연적으로 배출하고 농업, 축산업, 천연가스 연소, 폐기물 부패 등 인위적 원인으로 배출
- 소멸원: OH라디칼(수산화이온: 매우 불안정한 분자)과 반응하여 분해

기후변화에 미치는 영향
- 메탄은 이산화탄소 다음으로 중요한 온실가스 중 하나로 ppb(part per billion, 10억 분의 1) 수준으로 대기 중에 존재함. 복사강제력은 0.48W/m²으로 전지구 온실가스 복사강제력 대비 17.0% 기여하고 있음(IPCC, 2013).
- 남극과 북극에 아이스코어를 분석한 결과 현재 관측되고 있는 메탄의 농도는 지난 650,000년 동안 최고의 농도로 나타났음(IPCC, 2013).

그래프
설명

① 국내외 월평균농도(위치: 대기(대기조성) ➤ 메탄 ➤ 국내외 월평균농도)

제목: 국내외 메탄 월평균농도

그림설명: 전지구, 마우나로아(미국), 케이프그림(호주), 안면도의 월평균 메탄 농도 변화를 보여주는 그래프

의미: 전지구, 마우나로아, 케이프그림, 안면도의 메탄 농도가 계절변화를 보이며 꾸준히 증가하고 있음을 보여주고 있다.

업데이트 주기: 1회/년

출처: 온실가스세계자료센터(WDCGG)

② 최근 5년간 월변화(위치: 대기(대기조성) ➤ 메탄 ➤ 최근 5년간 월변화)

제목: 국내 최근 5년간 메탄 월변화(안면도)

그림설명: 최근 5년간 안면도의 메탄 월평균 농도 변화를 보여주는 그래프
- 지점(기간): 안면도(2013~2017년)

의미: 메탄과 반응하는 OH라디칼이 높아지는 여름에 메탄의 농도가 낮아질음을 알 수 있음. 월별로 보면 7월에 가장 낮고 10월에 가장 높은 값을 보임.

업데이트 주기: 1회/년
육불화황

생성 및 기후변화에 미치는 영향

육불화황은 ppt(part per trillion, 1조 분의 1) 수준으로 대기 중에 존재함. 100년을 기준으로 지구 온난화지수가 이산화탄소보다 22,800배가 높아 향후 기후변화에 영향을 줄 수 있는 잠재력 높은 온실가스임(IPCC, 2013).

주로 전기의 절연체 등으로 사용되며 적은 양이지만 마그네슘과 알루미늄 산업, 반도체 산업에서도 배출되어 대부분 산업에 기원함. 대류권에는 소멸기작이 거의 없고 중간권에서 처음으로 분해가 시작되기 때문에 대류권에서 육불화황의 체류시간은 약 3,200년으로 길며, 한번 대기로 배출되면 거의 선형으로 누적되어 빠르게 증가함.

그래프

<table>
<thead>
<tr>
<th>설명</th>
<th></th>
</tr>
</thead>
</table>
| 제목 | 메탄 농도의 비교 관측(한면도 실시간 - 안면도 플라스크 채취)
| 그림설명 | 안면도 메탄 농도의 실시간 시간평균 자료와 주 1회 플라스크 채취 자료(NOAA 중앙교정실 실험실 분석)를 함께 보여주는 그림
| 의미 | 관측자료의 신뢰성을 알아보기 위한 것으로 메탄의 두 분석 자료는 상당히 좋은 상관계수(R=0.97)를 보임. |
| 업데이트 주기 | 1회/년 |

육불화황

<table>
<thead>
<tr>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
<td>국내외 육불화황 월평균농도</td>
</tr>
<tr>
<td>그림설명</td>
<td>전지구, 마우나로아(미국), 안면도, 고산, 울릉도의 월평균 육불화황 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>의미</td>
<td>전지구와 한반도의 온실가스 농도가 증가하고 있으며, 한반도의 농도가 전지구보다 높음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>미국해양대기청(NOAA), 온실가스세계자료센터(WDCGG)</td>
</tr>
</tbody>
</table>
아산화질소

생성 및 기후변화에 미치는 영향

- 아산화질소는 대기 중 체류시간이 약 121년 정도 되는 온실가스로 1750년부터 2012년 사이 복사강제력이 전체 온실가스 중 6%를 차지하였음(IPCC, 2013). 아산화질소는 인위적 온실가스 중 세 번째로 높은 것으로 산업화 이전에는 270ppb 수준으로 존재하였음.

- 아산화질소의 자연기원은 해양, 토양 등이 있으며 화석연료, 농업비용의 사용, 여러 산업공정에서 배출되는 인위적 기원 등이 있음. 인위적 배출원과 자연적 배출원의 비율은 거의 같음. 아산화질소는 광분해에 의해 성층권에서 소멸되며, 성층권의 오존층파괴 과정에서 트리거로 사용되기도 함. 그러나 아직도 아산화질소의 전체 순환에 대해서 이해하지 못했음.

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 아산화질소(위치: 대기(대기조성) ▶ 기타 온실가스 ▶ 아산화질소)</td>
<td></td>
</tr>
</tbody>
</table>

- 제목: 국내외 아산화질소 월평균농도
- 그림설명: 전지구, 마우나로아(미국), 안면도, 고산의 월평균 아산화질소 농도 변화를 보여주는 그래프
- 의미: 전지구와 한반도의 온실가스 농도가 증가하고 있으며, 한반도의 농도가 전지구보다 높은 경우가 많음.
- 업데이트 주기: 1회/년
- 출처: 온실가스세계자료센터(WDCGG)

염화불화탄소류

생성 및 기후변화에 미치는 영향

- 염화불화탄소류는 주로 성층권에서 자외선에 의해 분해되며 대기 중 체류시간이 CFC-11은 50년, CFC-12는 110년으로, CFC-113은 85년으로 나타남. 염화불화탄소류는 냉매제로 주로 사용되며, 성층권의 오존층을 파괴하는 염소와 브로민이 포함되어 있어, 1990년대 몬트리올 의정서를 채택하여 규제를 시작하였음.

- 북반구의 관측소에서는 CFC-11은 1992년에 최대치를 보였다가 감소추세를 나타내며, CFC-12는 2005년에 최대치를 보이고 감소추세를 보이고 있음. CFC-12의 경우 대기 중 체류시간이 다른 두 물질에 비해 상대적으로 길기 때문에 규제에 대한 실제 반응속도는 늦고, 따라서 감소추이가 상대적으로 늦음.
<table>
<thead>
<tr>
<th>제목</th>
<th>국내외 염화불화탄소-11 월평균농도</th>
</tr>
</thead>
<tbody>
<tr>
<td>그래프 설명</td>
<td>전지구, 마우나로아(미국), 양연도의 월평균 염화불화탄소-11 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>의미</td>
<td>북반구에서 1992년에 최고값을 기록한 후 감소추세를 보이니, 양연도는 배출량 감소가 문화됨.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>미국해양대기청(NOAA), 온실가스세계자료센터(WDCGG)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>국내외 염화불화탄소-12 월평균농도</th>
</tr>
</thead>
<tbody>
<tr>
<td>그래프 설명</td>
<td>전지구, 마우나로아(미국), 양연도의 월평균 염화불화탄소-12 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>의미</td>
<td>북반구에서 2005년에 최고값을 보이고 점차 감소추세이나, 양연도는 배출량 감소가 문화됨. 다른 두 물질에 비해 대기 중 체류시간이 상대적으로 길어 규제 반응속도가 높아져, 감소추이가 상대적으로 늦음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>미국해양대기청(NOAA), 온실가스세계자료센터(WDCGG)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>국내외 염화불화탄소-113 월평균농도</th>
</tr>
</thead>
<tbody>
<tr>
<td>그래프 설명</td>
<td>전지구, 마우나로아(미국), 양연도의 월평균 염화불화탄소-113 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>의미</td>
<td>전지구, 양연도에서 감소추세를 보임. 마우나로아와 전지구 평균은 NOAA, 양연도는 한국표준과학연구원의 치료를 사용하여 각도에 의한 값의 차이가 있을 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>미국해양대기청(NOAA), 온실가스세계자료센터(WDCGG)</td>
</tr>
</tbody>
</table>
기타

① 온실가스 농도비교(위치: 대기(대기조성) ➤ 기타 ➤ 온실가스 농도비교)

의미
- 전지구와 안면도의 온실가스 농도가 증가하고 있으며, 안면도의 농도가 전지구보다 높음.

업데이트 주기
- 1회/년

출처
- 미국해양대기청(NOAA)

② 온실가스별 복사강제력(위치: 대기(대기조성) ➤ 기타 ➤ 온실가스별 복사강제력)

의미
- 전체 온실가스에 대한 복사강제력은 점차 증가하고 있으며, 2017년 주요 5가지 온실가스(이산화탄소, 메탄, 아산화질소, CFC-11, CFC-12)의 복사강제력은 전체의 96%를 차지하고, 기타 온실가스는 4%를 차지함.

업데이트 주기
- 1회/년

출처
- 미국해양대기청(NOAA)

전지구 연간 온실가스 지수

(AGGI, Annual Greenhouse Gas Index)

의미
- AGGI는 복사강제력이 어느 정도 상승했는지를 보여주며, \(AGGI_{2017} = 1.41 \)는 2017년도 온실가스 복사강제력이 1990년대 대비 41% 증가하였음을 의미.

업데이트 주기
- 1회/년

출처
- 미국해양대기청(NOAA)
<table>
<thead>
<tr>
<th>그래프</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>![온실가스 배출량][19] (위치: 대기(대기조성) > 기타 > 온실가스 배출량)</td>
<td>제목: 국내 분야별 온실가스 배출량 및 흡수량</td>
</tr>
<tr>
<td></td>
<td>그림설명: 각 분야별(에너지, 산업공정, 농업, 괴기물, LULUCF) 온실가스 연간 배출량 및 흡수량과 증감 경향을 보여주는 그래프</td>
</tr>
<tr>
<td></td>
<td>- 기간: 1990~2015년</td>
</tr>
<tr>
<td></td>
<td>※ LULUCF: 토지 이용, 토지 이용 변화 및 산림</td>
</tr>
<tr>
<td></td>
<td>의미: 분야별 온실가스 배출량 및 흡수량량을 하산환산소 환산량으로 제시함. 우리나라의 2015년 온실가스 총배출량(LULUCF 제외)은 690.2백만원 CO₂eq이며, 1990년도 총배출량(292.9백만원 CO₂eq.)에 비해 135.7% 증가하였음.</td>
</tr>
<tr>
<td></td>
<td>업데이트 주기: 1회/년</td>
</tr>
<tr>
<td></td>
<td>출처: 온실가스 종합정보센터(WDCGG)</td>
</tr>
</tbody>
</table>

![온실가스별 연간 배출량][20] (위치: 대기(대기조성) > 기타 > 온실가스 배출량)	제목: 국내 온실가스별 연간 배출량
	그림설명: 온실가스 종류(CO₂, CH₄, N₂O, SF₆ 등)에 따른 연간 배출량과 증감 경향을 보여주는 그래프
	- 기간: 1990~2015년
	의미: 2015년도에 CO₂는 1990년에 비하여 150.9%, N₂O는 49.1% 증가한 반면, CH₄은 14.4% 감소하였음. 불소계 온실가스는 1990년 대비 배출량이 크게 증가하였는데, HFCs는 707.0%, SF₆은 4,644.0% 증가함.
	업데이트 주기: 1회/년
	출처: 온실가스 종합정보센터(WDCGG)
일산화탄소

생성 및 기후변화에 미치는 영향

일산화탄소(CO)는 OH 라디칼과의 반응으로 이산화탄소, 메탄 등 온실가스 농도를 변화시켜 지구온난화에 영향을 미친(IPCC, 2013).

일산화탄소 농도는 북반구의 인위적인 오염원 배출로 인해 남반구에 비해 북반구에 높게 분포하며, 계절 변화의 폭도 북반구가 크고 남반구는 계절변화가 북반구와 반대이면서 그 폭이 좁은 것으로 나타났음. 일산화탄소의 농도는 점차 증가하고 있으며 이는 주로 엘니뇨 동안 발생한 생체 소각(biomass burning)으로 인한 배출이 주요 원인 중 하나임. 일산화탄소는 대기 내 수명이 짧아 지역에 따라 10일에서 일 년 이상임. 탄소 연료 연소의 주요 추적자이며 대기의 강력한 산화제인 OH 라디칼의 흡수원이기도 하여 GAW의 핵심 항목으로 관측되어 왔음.

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>일산화탄소(위치: 대기(대기조성)</td>
<td>반응가스</td>
</tr>
</tbody>
</table>

국내외 일산화탄소 연평균

<table>
<thead>
<tr>
<th>제목</th>
<th>국내외 일산화탄소 연평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>그렇당</td>
<td>전자구, 안면도, 고산, 울릉도의 일산화탄소 연평균 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
1. 제목: 국내외 일산화탄소 연도별 월평균

2. 그림설명: 전지구, 안면도, 고산, 울릉도, 마우나로아, 케이프그림, 료리의 일산화탄소 연도별 월평균 농도 변화를 보여주는 그래프

3. 의미: 남반구에 위치한 호주 케이프그림이 가장 농도가 낮고, 북반구에서 3,397 m 높이에 위치한 미국 마우나로아가 두 번째로 농도가 낮음. 우리나라의 경우 안면도가 가장 높음. 일산화탄소 농도는 북반구의 인위적인 오염원 배출로 인해 남반구에 비해 북반구에 높게 분포함. 계절 변화의 폭도 북반구가 크고 남반구는 계절 변화가 북반구와 반대이면서 그 폭이 좁음.

4. 업데이트 주기: 1회/년

5. 출처: 온실가스세계자료센터(WDCGG)

2. 제목: 국내외 일산화탄소 월평균

2. 그림설명: 전지구, 안면도, 고산, 울릉도의 일산화탄소 월평균 농도 변화를 보여주는 그래프

3. 의미: 2지점별로 월별 변화폭은 차이가 나지만, 여름철 7월 ~ 8월에 농도가 가장 낮고, 11월 ~ 3월 주로 겨울철에 농도가 높음.

4. 업데이트 주기: 1회/년

12. 종합 기후변화감시정보 활용 가이드스
생성 및 기후변화에 미치는 영향

질소산화물(NOx)은 O₃의 전구물질로 광화학반응을 포함한 대기화학 반응 과정에서 CO₂의 생성에 관여함. 질산염을 포함하는 에어로졸의 전구물질로 작용하여 간접적으로 용의 복사강제력을 발생시키고, CH₄와의 반응으로 성층권 H₂O에 영향을 미침(IPCC, 2013).

그러나 NOx는 반응성이 높아 대기 내 수명이 짧고, 지역에 따라 고르지 않게 분포하며 가스성 뿐만 아니라 에어로졸과도 상호 작용을 하므로 기후에 미치는 순 영향을 파악하기 어려움.

NOx는 자연적으로 대류권 상층에서 번개에 의해 생성되기도 하고, 토양, 식물 등의 질산염에서 광화학 활동으로 발생되기도 함. NOx는 인위적으로 발전소, 석유제 자동차, 선박, 항공기 등에서 화석연료를 고온 연소와 산불, 산림 벌채 등의 저온연소에서 발생함. NOx는 낮 동안의 빠른 광화학 반응으로 O₃과 OH라디칼의 농도를 조절하고 밤에 광화학 반응이 없는 야간 화학의 주요성분(N₂O₅)을 생성하는데 관여함.

그래프 설명

② 질소산화물(위치: 대기(대기조성) ▶ 반응가스 ◀ 질소산화물)

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 질소산화물 연도별 월평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>안면도, 고산에서의 질소산화물 연도별 월평균 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>- 지점(기간)</td>
<td>안면도(2004~), 고산(2012~)</td>
</tr>
<tr>
<td>의미</td>
<td>내륙에 가까운 안면도가 고산보다 농도가 높게 나타남.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 질소산화물 월평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>안면도, 고산에서의 질소산화물 월평균 농도 변화를 보여주는 그래프</td>
</tr>
<tr>
<td>- 지점(기간)</td>
<td>안면도(2004~), 고산(2012~)</td>
</tr>
<tr>
<td>의미</td>
<td>안면도는 10월에 10.4 ppb로 가장 높고 7월에 4.3 ppb로 가장 낮으며, 고산은 4월에 4.2 ppb로 가장 높고 7월에 2.6 ppb로 가장 높은 농도가 낮음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
이산화황

생성 및 기후변화에 미치는 영향

이산화황(SO₂)은 황산(H₂SO₄)의 주요 공급원이며, 수증기(H₂O)와 오존(O₃)과 반응하여 황산을 생성함. 황산은 산성비를 유발하거나 새로운 입자를 형성하는데 결정적인 역할을 함.

SO₂는 주로 산업공정, 발전소, 화산 분출 등에서 발생하며 지역 오염이나 화산 영향의 좋은 지시자이다. 이산화황(SO₂)은 화학반응을 거쳐 황산염 에어로졸을 생성하는데 이는 태양빛을 산란시켜 지구 냉각화에 기여함(IPCC, 2013).

<table>
<thead>
<tr>
<th>그래프</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. 이산화황(위치: 대기(대기조성)</td>
<td>반응가스</td>
</tr>
<tr>
<td>국내 이산화황 연도별 월평균</td>
<td></td>
</tr>
<tr>
<td>국내 이산화황 월평균</td>
<td></td>
</tr>
<tr>
<td>국내 이산화황 월평균</td>
<td></td>
</tr>
</tbody>
</table>

- 목 | 국내 이산화황 연도별 월평균
- 그림설명 | 안면도, 고산에서의 이산화황 연도별 월평균 농도 변화를 보여주는 그래프
- 지점(기간) | 안면도(2004~), 고산(2012~)
- 의미 | 내륙에 가까운 안면도가 고산보다 농도가 높게 나타남。
- 업데이트 주기 | 1회/연

- 목 | 국내 이산화황 월평균
- 그림설명 | 안면도, 고산에서의 이산화황 월평균 농도 변화를 보여주는 그래프
- 지점(기간) | 안면도(2004~), 고산(2012~)
- 의미 | 안면도는 1월에 5.2 ppb로 겨울철에 가장 높고 7월에 1.1 ppb로 여름철에 가장 낮으며, 고산도 1월에 0.8 ppb로 가장 높고 8월에 0.3 ppb로 가장 낮으나 안면도보다 변화폭이 적음.
- 업데이트 주기 | 1회/연
국내외 도시 반응가스(위치: 대기(대기조성) ❯ 반응가스 ❯ 국내외 도시 반응가스)

<table>
<thead>
<tr>
<th>제목</th>
<th>국내외 도시 반응가스 연평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>서울, 미국(LA), 일본(도쿄), 프랑스(파리), 영국(런던)의 연평균 이산화질소(NO$_2$), 이산화황(SO$_2$) 농도 변화를 비교한 그래프</td>
</tr>
<tr>
<td>지점</td>
<td>서울, 미국(LA), 일본(도쿄), 프랑스(파리), 영국(런던)</td>
</tr>
<tr>
<td>기간</td>
<td>2011~2017년</td>
</tr>
<tr>
<td>의미</td>
<td>이산화질소, 이산화황의 연도별 평균 농도는 서울이 다른 4개 국내 도시보다 높음.</td>
</tr>
</tbody>
</table>

 업데이트 주기 1회/년
출처 미한국환경공단 AirKorea

국내 연도별 반응가스 배출량

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 연도별 반응가스 배출량</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 일산화탄소(CO), 질소산화물(NO$_x$), 황산화물(SO$_x$) 연도별 배출량을 보여주는 그래프</td>
</tr>
<tr>
<td>기간</td>
<td>1999~2015년</td>
</tr>
<tr>
<td>의미</td>
<td>일산화탄소(CO) 배출량은 점진적으로 감소추이에 있었으나, 2009년에는 전년대비 16.2 % 증가하였다가 최근 지속적인 감소추세를 보이고 있음. 질소산화물(NO$_x$) 배출량은 최근 10년간 총계를 보면 점진적으로 감소하다가 2013년부터 증가추이를 보이고 있으며, 2015년에는 전년대비 1.9 % 증가하였음. 황산화물(SO$_x$) 배출량은 증감을 반복하며 전반적으로는 감소하는 추세를 보였고, 2015년에는 전년대비 2.7 % 증가한 것으로 나타남. 산출공정 제철철강부문 제품생산량 증가, 비산업 연소 상업 및 공공기관시설 활동도 증가 등이 배출량 증가에 영향을 주었음.</td>
</tr>
</tbody>
</table>

 업데이트 주기 1회/년
출처 국립환경과학원

국내 반응가스 부문별 배출량

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 반응가스 부문별 배출량</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 일산화탄소(CO), 질소산화물(NO$_x$), 황산화물(SO$_x$)의 연도별 부문별 배출량을 보여주는 그래프</td>
</tr>
<tr>
<td>기간</td>
<td>1999~2015년</td>
</tr>
</tbody>
</table>

 업데이트 주기 1회/년
출처 국립환경과학원
지표복사수지

<table>
<thead>
<tr>
<th>의의</th>
<th>태양 및 적외 복사의 흡수, 질량/하이드로의 방출, 재복사 등은 해양 및 대기 흐름의 주요한 에너지원이 됨.</th>
</tr>
</thead>
</table>
| 기후변화와의 관련성 | - 지구 대기에 유입되는 에너지의 대부분은 태양의 복사에너지로, 대기의 흐름에 의하여 산란 및 반사되거나 흡수되고 나머지는 대기를 통과하여 지표에 도달함.
- 이러한 복사에너지의 전달과정을 통하여 지표면 흐름에 따라 열과 수분 등의 교환이 일어나고, 도시 또는 교외지역과 같이 지표면 특성에 따라 서로 다른 특성을 나타남. 도시지역은 시멘트 또는 야스팔트와 같이 인공 구조물 등으로 피복되어 있기 때문에 일부 도시 및 차로등의 변화가 복사수지에 영향을 미치면서 도시 및 차로 등의 열적 특성을 가짐.
- 도시지역은 시멘트 또는 야스팔트와 같이 인공 구조물 등으로 피복되어 있어 알베도 및 방출률의 변화가 복사수지에 영향을 미치면서 도시 특성에 따른 다른 특성이라는 도시는 일반적으로 삼림지역과 같이 지표면 특성에 따라 서로 다른 특성을 나타남. 도시지역은 시멘트 또는 야스팔트와 같이 인공 구조물 등으로 피복되어 있기 때문에 일부 도시 및 차로등의 변화가 복사수지에 영향을 미치면서 도시 특성에 따른 다른 특성을 나타남.
- 도시지역은 시멘트 또는 야스팔트와 같이 인공 구조물 등으로 피복되어 있어 알베도 및 방출률의 변화가 복사수지에 영향을 미치면서 도시 특성에 따른 다른 특성을 나타남.

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
</table>
| ① 순복사, 직달일사(위치: 대기(대기조성) ▸ 지표복사수지 ▸ 순복사, 직달일사) | 제목 순복사 연도별 월평균

[그림설명] 안면도에서 순복사의 연도별 월평균값을 나타낸 그래프
- 지점(기간): 안면도(1999~2017년)
- 의미 순복사는 지표에 순수하게 도달하는 에너지로, 지표 에너지수지를 결정하는 중요한 요소임.
업데이트 주기 1회/년 |

| 태양복사(흡수), 지구복사(방출), 순복사 월평균 | 제목 태양복사(흡수), 지구복사(방출), 순복사 월평균

[그림설명] 안면도에서 태양복사, 지구복사, 순복사에 대한 월평균 그래프
- 지점(기간): 안면도(1999~2017년)
- 의미 태양으로부터 들어오는 태양복사와 지구에서 방출하는 지구복사, 순복사는 두 요소의 차이임. 일반적으로 순복사는 뿐만 아니라 녹색, 녹색에 높고, 늘어도 높음.
※ 순복사 = (태양하향복사 + 태양상향복사) - (지구상향복사 + 지구하향복사)
업데이트 주기 1회/년 |

| 직달일사 월평균 | 제목 직달일사 월평균

[그림설명] 안면도와 고산에서의 직달일사 월평균 그래프
- 지점(기간): 고산(2008~2017년)
- 의미 직달일사는 복사에너지, 공기입자와 구름, 황산, 먼지 등 주요한 산란과 흡수에 의해 영향을 받음. 대체로 안면도가 고산보다 높은 분포로 보임.
※ 직달일사: 공기입자에 의한 산란은 낮고 직점 관측면에 도달하는 태양복사를 의미
업데이트 주기 1회/년 |
그래프

설 명

② 연관정보(위치: 대기(대기조성) ▶ 자외선(자외선)) ▶ 연관정보)

제목 직달일사와 강수량, 일조시간 비교

그림설명 안면도와 고산에서 직달일사와 강수량, 일조시간의 상관관계를 비교한 그래프

※ 안면도 자료: 직달일사(안면도), 월강수량과 일조시간(서산)

의미 안면도와 고산에서 5월에 직달일사와 일조시간이 가장 많았으며, 안면도는 강수량이 가장 많았던 7월, 고산은 두 번째로 강수량이 많았던 6월에 가장 적었음.
※ 일조시간: 태양의 직사광선이 지표를 비추는 시간의 길이

업데이트 주기 1회/년

제목 직달일사와 자외선 비교

그림설명 안면도, 고산의 직달일사와 자외선A 일누적 월평균의 상관관계 그래프

의미 직달일사와 자외선A 일누적 월평균은 안면도와 고산에서 5, 6월에 가장 높았으며, 6, 7월에 낮아지는 경향을 보임.

업데이트 주기 1회/년
의의
공기 중에 떠 있는 고체 또는 액체 상태의 작은 입자로 보통 0.001 ~ 100μm 정도의 크기를 가지며, 기후변화와 인간 건강에 직접적으로 영향을 주는 물질

종류
에어로졸 크기는 핵화 모드 (0.001 ~ 0.01μm), 에이트켄 모드 (0.01 ~ 0.1μm), 축적 모드 (0.1 ~ 1μm) 조대 모드 (1μm 이상)로 구분됨.

발생
황사, 화산재, 해염 등 자연적 요인에 의해 생성되기도 하고 인간 활동에 따른 인위적 요인에 의해서 만들어질 수도 있음. 도시/산업시설 배출, 소각, 자동차 등은 인위적 오염물질의 주요 발생원일. 인위적 오염 물질로는 검댕, 황화합물, 유기화합물 등이 있음.

기후변화에 미치는 영향
에어로졸은 대기오염물질과 결합하여 산성비, 스모그, 시정 감소의 원인을 잡은 바 있으며, 근래의 기후변화와 유사성을 나타내고 있음. 2010년 10월 ~ 2017년 12월 기간의 그래프를 통해 확인할 수 있음.

1) 에어로졸 광학깊이 (Aerosol Optical Depth)
- 제목: 안면도 에어로졸 광학깊이 (AOD)
- 설 명: 안면도의 500nm에서의 에어로졸 광학깊이의 월평균값, 최저/최고값, 중앙값을 보여줌.
- 기간: 2010년 10월 ~ 2017년 12월
- 데이터 주기: 1회/년

2) 응스트롬지수
- 제목: 안면도 응스트롬지수
- 설 명: 안면도의 500nm에서의 응스트롬지수의 월평균값, 최저/최고값, 중앙값을 보여줌.
- 기간: 2010년 10월 ~ 2017년 12월
- 데이터 주기: 1회/년

※ 에어로졸의 광학깊이란, 태양복사가 대기의 상한에서 지표까지 도달하는 동안 대기 중에 존재하는 여러 성분들에 의해 감쇄되는 효과를 나타내는 정도임.

※ 에어로졸의 응스트롬지수란, 광산란의 파장의존도를 나타내는 것으로 에어로졸의 상대적인 크기 정보를 알아낼 수 있으며, 이 값이 작은수록 큰 입자들 우세하다고 볼 수 있음.
③ PM10 농도(위치: 대기(대기조건) ▶ 에어로졸 ▶ PM10)

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>안면도, 고산의 PM10 연평균 농도</td>
<td></td>
</tr>
</tbody>
</table>
제목
안면도, 고산의 PM10 연평균 농도

그림설명
- 안면도와 고산의 점적이 10μm 이하인 입자(PM10)에 대한 질량 농도의 연변화 경향을 보여주는 그래프

의미

업데이트 주기
1회/년

※ PM10이란, 대기 중에 따다리는 고체 또는 액체 상태의 미세입자로, 입자크기(직경)가 10μm 이하인 먼지

| 안면도, 고산의 PM10 월평균 농도 |
|--------|-------|
| 안면도, 고산의 PM10 월평균 농도 |
제목
안면도, 고산의 PM10 월평균 농도

그림설명
- 안면도와 고산의 PM10 농도의 월변화 경향을 보여주는 그래프

의미
- 안면도와 고산은 봄철(안면도: 4월, 고산: 5월)에 최댓값을, 여름철(안면도: 8월, 고산: 7~9월)에 최솟값을 보임.

업데이트 주기
1회/년

| 안면도, 고산의 입자크기별 부피농도(μm³/cm³) |
|--------|-------|
| 안면도, 고산의 입자크기별 부피농도(μm³/cm³) |
제목
안면도, 고산의 입자크기별 부피농도(μm³/cm³)

그림설명
- 2017년 안면도, 고산 에어로졸 입자크기에 따른 부피농도(μm³/cm³)의 변화양상을 보여주는 그래프

의미
- 안면도에서는 1~6월, 고산에서는 7~8월에 대부분 입자 크기 영역에서 더 높은 부피농도가 관측됨.

업데이트 주기
1회/년

| ④ 응결핵 수농도(위치: 대기(대기조건) ▶ 에어로졸 ▶ 응결핵 수농도) |
|--------|-------|
| 고산 응결핵 수농도 |
제목
고산 응결핵 수농도

그림설명
- 2010~2017년 동안 고산에서 크기가 0.01~3μm인 입자의 단위부피당 에어로졸 개수(개/cm³)의 월변화

의미
- 고산지역, 지난 8년(2010~2017년) 동안 0.01~3μm 크기의 입자 수농도는 1월(3,727.3개/cm³)에 가장 적었고, 10월(7,220.2개/cm³)에 가장 많았음.

업데이트 주기
1회/년
변화 감시 정보 활용 가이드

의의
분자상태의 산소(O₂)와 태양복사(자외선)간의 상호작용에 의해 생성되며, 성층권 복사 상황에 결정적인 역할을 함. 성층권 오존은 기온의 수직구조를 결정하며, 자외선으로부터 지표면을 보호하는 역할을 합니다.

발생과 소멸
- **발생원**: 성층권에 존재하는 오존은 대기 중 21%를 차지하는 산소 분자가 태양 자외선복사(태양빛)와 화학반응을 일으켜 자연적으로 형성됨.
- **소멸원**: 오존은 불안정한 구조를 하고 있으므로 생물체에 유해한 파장 200~300nm의 자외선으로부터 빨리 소멸한다.

기후변화에 미치는 영향
- 성층권에는 지구 대기에 존재하는 오존의 약 90%가 존재하며, 성층권 내에서의 오존은 화합물의 핵심이외에도 생물체에 유해한 파장 200~300nm의 자외선으로부터 유해한 파장 200~300nm의 자외선으로부터 지표면을 보호하는 역할을 합니다.
- 오존층의 변화는 지구 대기의 복사 에너지 균형에 미치는 영향을 미치고 있으며, 오존층 파괴는 국제사회에 큰 관심을 끌었습니다.

그래프

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 국내외 지정별 연평균 오존전량 (위치: 대기(대기조성) 성층권 오존)</td>
</tr>
<tr>
<td>1.1 국내외 지정별 연평균 오존전량</td>
</tr>
<tr>
<td>그림설명</td>
</tr>
<tr>
<td>지점: 삿포로(일본), 서울, 안면도, 충투비(일본), 고산, 나하(일본)</td>
</tr>
<tr>
<td>기간: 2017년</td>
</tr>
<tr>
<td>의미</td>
</tr>
<tr>
<td>업데이트 주기</td>
</tr>
<tr>
<td>출처</td>
</tr>
</tbody>
</table>

| 1.2 국내외 지정별 월평균 오존전량 |
| 그림설명 | 웨도가 다른 6개 지역의 최근 5년간 오존변화 월변화 경향을 보여주는 그래프 |
| 지점: 삿포로(일본), 서울, 안면도, 충투비(일본), 고산, 나하(일본) |
| 기간: 2013~2017년 |
의미	웨도를 제외한 5개 지점을 붉게 높고, 가을철에 높게 나타나는 유사한 경향을 보여준다. 고위도로 갈수록 월별 변화폭이 큽니다.
업데이트 주기	1회/년
출처	일본기상청
21

성층권 오존

국내 오존 연직분포

<table>
<thead>
<tr>
<th>제목</th>
<th>오존 연직 프로파일(포항)</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>포항지역의 연직 분포에 존재하는 오존 농도를 연도별로 나타내는 그래프</td>
</tr>
<tr>
<td>- 기간</td>
<td>1995~2017년</td>
</tr>
</tbody>
</table>
| 의미 | 오존농도는 하부성층권에서 최대로 나타나며, 대류권에서는 대체적으로 균일한 농도를 보임.
※ 단위: 오존분압(Ozone partial pressure, mPa: 공기와 혼합물 내의 오존의 분압을 나타냄) |
| 업데이트 주기 | 1회/년 |

2017년 오존농도 연직분포(포항)

<table>
<thead>
<tr>
<th>제목</th>
<th>2017년 오존농도 연직분포(포항)</th>
</tr>
</thead>
</table>
| 그림설명 | 2017년 포항 고도별 오존농도 월별화 경향을 나타내는 그래프
- 자료: 2017년 포항 고도별 오존농도 일평균 자료 |
| 의미 | 오존 농도는 주로 18~28km에 존재하고 1~5월에 높게 나타나며, 주로 봄철에 높은 값이 나타남.
※ 단위: 오존분압(Ozone partial pressure, mPa: 공기와 혼합물 내의 오존의 분압을 나타냄) |
| 업데이트 주기 | 1회/년 |
자외선

의의

언세에 필수적인 비타민D의 주요한 자연적 생성원이나, 홍반(화상), 피부암, 피부노화 등 인간 건강에 직접적으로 영향을 줍니다.

구분

- 자외선 A(315~400nm): 흡수되지 않고 대부분 지표 도달, 피부노화, 주름 원인.
- 자외선 B(280~315nm): 약 90%가 대기 중에 흡수, 일부 지표 도달, 백네장, 피부암 등 유발
- 자외선 C(100~280nm): 약 35km 고도까지 오존에 의해 모두 흡수

기후변화의 관련성

자외선은 아래의 요소에 의해 영향을 받음.
- 태양고도: 1년 중 여름, 하루 중 낮, 지역은 저위도로 갈수록 자외선이 강해짐.
- 오존: 오존층 파괴로 오존이 줄어들면 자외선이 강해짐.
- 구름: 구름이 없는 날 자외선이 눈에 나타남.
- 에어로졸: 에어로졸이 늘어나면 자외선이 약해짐.
- 지표면 반사도: 지표면의 반사율이 높으면 자외선이 강해짐.
- 해발고도: 해발고도가 1km 높아지면 자외선은 약 10% 강해짐.

그래프

설명

1 실시간 총자외선지수(위치: 자외선 → 자외선 → 실시간 총자외선지수)

- 해관 15개 지점의 실시간 총자외선지수
 - 지점: 서울, 인천, 강릉, 안면도, 경주, 울릉도, 대전, 전주, 대구, 포항, 광주, 울산, 목포, 부산, 고산

- 의미
 1. 전국 15개 관측소에서의 실시간 총자외선지수
 2. 선택 지점의 총자외선지수 단계와 그에 해당하는 행동요령
 3. 선택 지점의 오늘/어제/그제의 총자외선지수 시계열(10분 간격)
 4. 전국 7개 지점의 2017년 월별 일최고 자외선지수 단계별 발생일수 막대그래프
 5. 전국 15개 관측소에서의 일최고 총자외선지수(일최고 탭 클릭 시 표출)
 6. 선택 지점의 최근 3개월 동안의 일최고 총자외선지수 시계열
 7. 총자외선지수 단계별 행동요령 및 관련 도움말

2 실시간 총자외선지수(일최고)
② 총자외선지수(위치: 자외선 ▶ 자외선 ▶ 총자외선지수)

<table>
<thead>
<tr>
<th>그래프</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>제목: 총자외선지수 연도별 월평균
 그램설명: 국내 4개 지점의 총자외선지수 월평균값을 나타낸 그래프
 지점(기간): 안면도(2008년~), 고산(2012년~), 울릉도(2012년~), 포항(2010년~)</td>
</tr>
</tbody>
</table>

③ 총자외선지수 일최고 단계별 일수(위치: 자외선 ▶ 자외선 ▶ 총자외선지수 일최고 단계별 일수)

<table>
<thead>
<tr>
<th>총자외선지수 일최고 단계별 일수</th>
<th>설명</th>
</tr>
</thead>
</table>
자외선 A, B 일자료

자외선 A 일누적값

자외선 B 일최고값

자외선 A 일누적 월평균

자외선 A 일최고 월평균

그래프 설명

1. 자외선 A 일누적 월별평균 및 분포

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선A 일누적 월별평균 및 분포</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 4개 지점의 자외선A 일누적값의 월별평균 및 분포를 나타낸 박스플롯 그래프</td>
</tr>
<tr>
<td>※ 그래프 양끝(최댓값, 최솟값), 상자 양끝(25%, 75%값), 상자 가운데 실선(중간값), 보라색 선(평균값)</td>
<td></td>
</tr>
<tr>
<td>의의</td>
<td>지점별 자외선A 일누적값의 월별 평균값과 분포경향을 볼 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

2. 자외선 B(위치: 자외선 > 자외선 > 자외선B)

자외선B 일누적 월평균

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선B 일누적 월평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 4개 지점의 자외선B 일누적 월평균값을 나타낸 그래프</td>
</tr>
<tr>
<td>의의</td>
<td>지점별 자외선B 일누적 월평균값의 변화 경향을 볼 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

자외선B 일최고 월평균

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선B 일최고 월평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 4개 지점의 자외선B 일최고값 월평균값을 나타낸 그래프</td>
</tr>
<tr>
<td>의의</td>
<td>지점별 자외선B 일최고값 월평균값의 변화 경향을 볼 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

자외선B 일최고 월별평균 및 분포

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선B 일최고 월별평균 및 분포</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 4개 지점의 자외선B 일최고값의 월별평균 및 분포를 나타낸 박스플롯 그래프</td>
</tr>
<tr>
<td>※ 그래프 양끝(최댓값, 최솟값), 상자 양끝(25%, 75%값), 상자 가운데 실선(중간값), 보라색 선(평균값)</td>
<td></td>
</tr>
<tr>
<td>의의</td>
<td>지점별 자외선B 일최고값의 월별 평균값과 분포경향을 볼 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
연관정보

자외선과 오존전량

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선과 오존전량</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>안면도, 고산에서의 자외선과 오존전량 상관관계를 비교한 그래프</td>
</tr>
<tr>
<td>의미</td>
<td>자외선B의 일최고 월평균은 78월에 가장 높고 111월에 가장 낮았으나, 오존전량은 24월에 가장 높고, 78월에 낮아지는 경향을 보이다가 10월에 가장 낮았음, 즉 오존전량이 자외선 투과를 막아주는 것을 알 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

자외선과 PM10

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선과 PM10</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>안면도, 고산에서의 자외선과 PM10 상관관계를 비교한 그래프</td>
</tr>
<tr>
<td>의미</td>
<td>자외선B는 78월에 가장 높고 11월1월에 가장 낮았으나, PM10은 45월에 가장 높고, 79월에 가장 낮았음, 즉 입자크기(직경)가 10μm 이하인 먼지입자 PM10이 자외선 투과를 막아주는 것을 알 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

자외선과 피부질환 환자수

<table>
<thead>
<tr>
<th>제목</th>
<th>자외선과 피부질환 환자수</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>자외선과 자외선에 의한 기타 급성 피부변화 환자수와의 상관관계를 비교한 그래프</td>
</tr>
<tr>
<td>지점(기간)</td>
<td>안면도 자외선(20102017년), 전국 자외선에 의한 기타 급성 피부변화 환자수(20102017년)</td>
</tr>
<tr>
<td>의미</td>
<td>월별 자외선B의 증감과 자외선에 의한 기타 급성 피부변화 환자수의 경향이 비슷함.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>건강보험심사평가원</td>
</tr>
</tbody>
</table>
의의
기후시스템의 상태를 결정하는 가장 중요한 변수로서, 기후변화 감지와 인류/자연발생 요인이 기후변화에 미치는 영향력을 평가하는 주요 인지. 또한 자연 및 인간 시스템에 영향을 미치는 다른 많은 인자의 동향을 관리.

기후변화와의 관련성
대기 열수지의 지역적 차이로 인해 기온차가 발생하고, 그 결과로 인한 대기 밀도차에 의해 여러 가지 일기현상이 발생함. 또한 기온의 변화는 인간생활에 깊게 연관되어 있으며, 동식물의 생육 및 각종 산업의 환경 지표로 중요한 역할을 하게 됨.

그래프

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 국내외 평균기온 편차(위치: 대기(기상요소) > 기온 > 국내외 평균기온 편차)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 평균기온 편차와 시나리오</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>기온 편차의 과거자료와 미래 시나리오 전망의 변화경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>전국 6개 지점(19122017년), 45개 지점(19732017년)에서의 연평균기온편차와 2018년 이후의 시나리오(RCP 2.6/4.5/6.0/8.5) 연평균기온 편차 자료</td>
</tr>
<tr>
<td>의미</td>
<td>6개 지점의 평균기온 편차는 1912년 -1.6℃, 2017년 0.5℃이고, 45개 지점의 평균기온 편차는 1973년 -0.1℃, 2017년 0.6℃로 증가하는 추세임</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>국내 기온 통계분석 기준 및 기타정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 연평균기온편차: 연평균기온과 평년(1981~2010년 평균)값의 차이</td>
</tr>
<tr>
<td>- 평년값: 6개 지점 13.4℃, 45개 지점 12.5℃</td>
</tr>
<tr>
<td>- 6개 지점: 서울, 인천, 강릉, 대구, 부산, 목포(1912~2017)</td>
</tr>
<tr>
<td>- 45개 지점: 전국 통계를 대표하는 지점(1973~2017)</td>
</tr>
<tr>
<td>※ 1922년은 일부 자료 누락, 1950~1953년은 전쟁 기간으로 자료가 누락되어 있음</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCP 시나리오</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCP 2.6</td>
</tr>
<tr>
<td>RCP 4.5</td>
</tr>
<tr>
<td>RCP 6.0</td>
</tr>
<tr>
<td>RCP 8.5</td>
</tr>
</tbody>
</table>

전지구 연강수량 편차

<table>
<thead>
<tr>
<th>제목</th>
<th>전지구 평균기온 편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>전지구 연평균기온 편차의 변화 경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>전지구 연평균기온 편차(1891~2017년)</td>
</tr>
<tr>
<td>※ 연평균기온 편차: 연평균기온과 평년(1891~2010년 평균)값의 차이</td>
<td></td>
</tr>
<tr>
<td>의미</td>
<td>전지구 연평균기온 편차는 1891년 -0.6℃, 2017년 0.4℃로 증가하는 추세임</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
28종합 기후변화감시정보 활용 가이던스

국내 평균기온 변화율

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 평균기온 변화율</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>전국의 관측지점을 중심으로 기온이 증가(또는 감소)하는 경향을 한눈에 알 수 있음. 색이 진할수록 기온이 많이 올라갔음을 의미함.</td>
</tr>
<tr>
<td>자료</td>
<td>국내 지점별 평균기온의 변화율(1973~2017년)</td>
</tr>
<tr>
<td>의미</td>
<td>경기 남부, 강원 영서, 충청 내륙, 경북 남부를 중심으로 기온 증가율이 컸으며, 문경은 감소(-0.04℃/10yr) 추세에 있음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

현상 일수

<table>
<thead>
<tr>
<th>제목</th>
<th>현상 일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>연중 결빙일수(일최고기온이 0℃ 이하인 날 수)의 변화경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 6개(19122017년), 45개(19732017년) 지점의 연중 결빙 일수</td>
</tr>
<tr>
<td>의미</td>
<td>6개 지점의 평균 연중 결빙일수는 1912년 11.2일, 2017년 9일이고, 45개 지점은 1973년 7.3일, 2017년 8.1일로 줄어드는 추세임</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

열대야일수

<table>
<thead>
<tr>
<th>제목</th>
<th>열대야일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>평균 연중 열대야일수(일최저기온이 25℃ 이상인 날 수)의 변화경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개(1973~2017년) 지점의 연중 열대야일수</td>
</tr>
<tr>
<td>의미</td>
<td>45개 지점의 평균 연중 열대야일수는 1973년에 6.6일이었고, 1994년에 가장 긴 17.7일이며, 2017년에는 10.8일로 1973년에 비해 4.2일 증가 하였음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

냉방도일

<table>
<thead>
<tr>
<th>제목</th>
<th>냉방도일</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>평균 냉방도일의 변화경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 6개(19122017년), 45개(19732017년) 지점의 연평균 냉방도일(기준온도 26℃)</td>
</tr>
<tr>
<td>의미</td>
<td>냉방도일 값이 크다는 것은 기후가 더워져 냉방을 위해 전력을 많이 소모 하는 것을 의미하며, 평균기온과 함께 증가하는 추세임</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
중합 기후변화감시정보 활용 가이드스 _29

난방도일

설명

연평균 난방도일의 변화경향을 보여주는 그래프

- 자료: 국내 6개(1912~2017년), 45개(1973~2017년) 지점의 연평균 난방도일(기준온도 18℃)

의미

난방도일 값이 크다는 것은 기후가 추워져 난방을 위해 연료비를 많이 소비하는 것을 의미하며, 평균기온 증가함에 따라 감소하는 추세

업데이트 주기 1회/년

국내 기온편차와 이산화탄소 농도 비교

설명

국내 연평균기온편차와 이산화탄소 농도의 변화 경향을 비교하는 그래프

의미

국내 기온 편차가 양의 방향으로 증가함에 따라, 이산화탄소 농도도 증가함. 2017년 기온편차는 +0.6℃, 이산화탄소 농도는 412.2ppm으로, 1999년에 비해 각각 0.3℃, 41ppm 증가함.

업데이트 주기 1회/년

전지구 기온편차와 이산화탄소 농도 비교

설명

전지구 연평균기온편차와 이산화탄소 농도의 변화 경향을 비교하는 그래프

의미

전지구 연평균 기온편차가 양의 방향으로 증가함에 따라, 이산화탄소 농도도 증가함.

업데이트 주기 1회/년
강수의 특성(주기, 강도, 양)은 기후시스템 상태를 기술하는 주요한 요소이며, 강수 변동성 및 극한 현상을 분석하기 위한 요소임.

기후변화와의 관련성
- 기후변화 및 그로 인한 자연/환경/인간 사회에 대한 영향 평가를 위해 강수변화는 매우 중요한 요소이며, 시간에 따른 변화는 용수공급 및 농업과도 밀접한 관련이 있음.
- 강수 및 강설로 인한 환경 변화는 에너지-물 순환이나 기후시스템이 생태계에 미치는 영향을 이해하는데 도움을 주며, 식생, 사막화, 가뭄, 용수, 호우 등 여러 가지 현상에 영향을 미침.

강수의 특성(주기, 강도, 양)은 기후시스템 상태를 기술하는 주요한 요소이며, 강수 변동성 및 극한 현상을 분석하기 위한 요소임.

기후변화와의 관련성
- 기후변화 및 그로 인한 자연/환경/인간 사회에 대한 영향 평가를 위해 강수변화는 매우 중요한 요소이며, 시간에 따른 변화는 용수공급 및 농업과도 밀접한 관련이 있음.
- 강수 및 강설로 인한 환경 변화는 에너지-물 순환이나 기후시스템이 생태계에 미치는 영향을 이해하는데 도움을 주며, 식생, 사막화, 가뭄, 용수, 호우 등 여러 가지 현상에 영향을 미침.
그래프

② 국내 연강수량 변화율

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 연강수량 변화율</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>전국의 관측지점 중심으로 강수량이 증가(또는 감소)하는 경향을 한눈에 알 수 있음. 색이 진할수록 강수량이 많이 증가했음을 의미함.</td>
</tr>
<tr>
<td>자료</td>
<td>국내 지점별 연강수량 변화율(1973~2017년)</td>
</tr>
<tr>
<td>계산방법</td>
<td>국내 연강수량 변화율 계산방법: 47개 지점(전국 45개 지점 + 제주, 서귀포)에서 1973~2017년의 연간 변화율(mm/yr)에 10년을 곱해서 내삽</td>
</tr>
<tr>
<td>의미</td>
<td>전국적으로 연강수량이 증가하는 추세이며, 지점별로 서귀포, 서울, 남해 순으로 두letic 증가하였고, 해남, 밀양, 강화 순으로 감소하였음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

국내 연강수량 변화율

전국의 관측지점 중심으로 강수량의 증가 또는 감소에 대한 경향을 나타내는 그래프입니다. 색이 진할수록 강수량이 많이 증가했음을 의미합니다. 자료는 1973년부터 2017년까지의 연간 변화율을 기준으로 계산된 값으로, 10년 단위로 내삽하여 전국적으로 연간 강수량의 변화경향을 보여줍니다. 업데이트 주기는 1회/년입니다.

③ 호우일수

<table>
<thead>
<tr>
<th>제목</th>
<th>호우일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 6개 지점에 대해 강우강도가 시간당 30mm 이상인 일수(연간)의 변화경향을 나타내는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>지점별 연간 호우일수(1914~2017년)</td>
</tr>
<tr>
<td>의미</td>
<td>호우일수가 1914년 1일, 1973년 5일, 2017년 17일로 증가하며, 1998년에 20일로 가장 많았음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

호우일수

국내 6개 지점에서 강우가 시간당 30mm 이상인 일수(연간)의 변화경향을 나타내는 그래프입니다. 자료는 1914년부터 2017년까지의 연간 호우일수로, 업데이트 주기는 1회/년입니다.
대기(기상요소)
풍향·풍속

■ 의의
바람은 해양순환에 주요한 원동력으로, 많은 양의 열, 담수, 탄소를 전지구적으로 운반하며, 기후변화 감지 및 기후모델 평가에 주요한 자료임.

■ 기후변화와의 관련성
육지에서의 바람은 열속의 수평·수직 이동과 밀접한 관련이 있는 지구표면 열균형에 큰 영향을 미치며, 또한 공기의 이동, 에너지 생산, 대기질 관리 및 인류 건강과도 밀접한 관련이 있음.

<table>
<thead>
<tr>
<th>그래프</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 평균풍속 연월평균(위치: 대기(기상요소) ▶ 풍향·풍속 ▶ 평균풍속 연월평균)</td>
<td></td>
</tr>
</tbody>
</table>
| ![평균풍속 연평균](image1) | 제목: 평균풍속 연평균
그래 설명: 연도별 평균풍속의 변화경향을 보여주는 그래프
- 자료: 국내 45개 지점의 연평균 평균풍속(1973-2017년)
의미: 평균풍속 연평균의 추세선을 보면 점차 풍속이 약해지는 경향을 보임.
업데이트 주기: 1회/년 |
| ② 평균풍속 계절별 연평균 |
| ![평균풍속 계절별 연평균](image2) | 제목: 평균풍속 계절별 연평균
그래 설명: 계절별 평균풍속의 변화경향을 보여주는 그래프
- 자료: 국내 45개 지점의 계절별 평균풍속(1973-2017년)
의미: 추세선을 보면 여름철은 풍속이 강해지고 그 밖의 계절은 풍속이 약해 지는데 특히 겨울철 풍속의 하강폭이 가장 큽.
업데이트 주기: 1회/년 |
| ③ 평균풍속 월별평균 |
| ![평균풍속 월별평균](image3) | 제목: 평균풍속 월별평균
그래 설명: 월별 평균풍속의 특징을 보여주는 그래프
- 자료: 국내 45개 지점의 월별 평균풍속(1973-2017년)
의미: 평균풍속 월평균값은 4월에 2.39m/s로 풍속이 가장 강하고 9월에 1.67m/s로 가장 약했음.
업데이트 주기: 1회/년 |

32 종합 기후변화감시정보 활용 가이드스
그래프

② 평균풍속 개별 연간 일수(위치: 대기(기상요소) ▶ 평균풍속 ▶ 평균풍속 개별 연간 일수)

제목: 평균풍속 개별 연간 일수

설명: 평균풍속 3m/s 초과, 10m/s 초과 발생 일에 대한 평균 연간 일수 그래프

- 자료: 국내 45개 지점의 평균풍속 3m/s 초과 연간일수, 10m/s 초과 연간일수(1973~2017년)

의미: 평균풍속이 3m/s, 10m/s 초과인 경우 평균 연간 일수는 1973년에 84.3일, 0.4일이고, 2017년에 48.7일, 0일로 줄어 모두 감소하는 경향을 보임.

업데이트 주기: 1회/년

강풍주의보 기준 연간 일수

제목: 강풍주의보 기준 연간 일수

설명: 강풍주의보 기준일 경우의 평균 연간 일수 그래프

- 자료: 국내 45개 지점의 일 최대풍속 14m/s 이상 연간일수, 20m/s 이상 연간일수(1973~2017년)

의미: 일 최대풍속이 14m/s, 20m/s 이상인 경우 평균 연간 일수는 1973년에 4.5일, 6.7일이고, 2017년에 0.4일, 0.7일로 줄어 모두 감소하는 경향을 보임.

※ 강풍주의보 기준: 최대풍속 14m/s 이상, 최대순간풍속 20m/s 이상

업데이트 주기: 1회/년

계절별 최다풍향, 평균풍속 분포도

제목: 계절별 최다풍향, 평균풍속 분포도

설명: 전국의 관측지점을 중심으로 계절 및 기간별 최다풍향과 평균풍속의 변화 경향을 한눈에 알 수 있음.

- 자료: 국내 45개 지점의 계절별 기간별 최대풍향 및 평균풍속

의미: 계절별 최대풍향은 북은 서풍계열, 여름은 남풍계열, 가을은 북풍계열, 겨울은 북서풍 계열이 우세하며, 과거에서 현재로 갈수록 평균풍속이 약해지는 것을 분석기간별 비교를 통해 확인 할 수 있음.

업데이트 주기: 1회/년
4) 지점별 바람장미(위치: 대기(기상요소) ▶ 평균풍속 ▶ 지점별 바람장미)

재목 지점별 바람장미

설명 국내 45개 지점의 월, 년, 계절별 바람장미와 평균풍속
자료: 국내 45개 지점의 월, 년, 계절별 평균풍속(1973~2017년)

의미 각 지점별 원하는 기간의 바람 특성을 볼 수 있으며, 평균풍속 등급에 따른 비도율(%)을 확인할 수 있음.

업데이트 주기 1회/년

5) 연관정보(위치: 대기(기상요소) ▶ 평균풍속 ▶ 연관정보)

재목 태풍 강도별 발생횟수(우리나라 영향)

설명 우리나라에 영향을 준 태풍의 강도별 개수와 태풍의 최대풍속을 나타낸 그래프
자료: 우리나라에 영향을 준 태풍의 강도별 개수와 태풍의 최대풍속(1951~2017년)
※ 태풍 강도기준: 최저기압 970hPa 미만(강), 970hPa 이상(약)
의미 연간 1~7개의 태풍이 우리나라에 영향을 주었고, 태풍 개수와 최대풍속 추세선을 보면 약하게 감소하는 경향을 보임.

업데이트 주기 1회/년

출처 일본기상청 베스트트랙 자료(국가태풍센터)
※ 베스트트랙: 태풍이 소멸한 뒤 인공위성과 육상 해상 등지에서 관측한 각종 자료를 정밀 재분석한 후 최종 확정한 태풍의 실제 이동 경로

재목 태풍 강도별 발생횟수(북태평양 서쪽)

설명 북태평양 서쪽에서 발생한 태풍의 강도별 발생횟수와 태풍의 최대풍속을 나타낸 그래프
자료: 북태평양 서쪽에서 발생한 태풍의 강도별 개수와 태풍의 최대풍속(1951~2017년)
※ 태풍 강도기준: 최저기압 970hPa 미만(강), 970hPa 이상(약)
의미 연간 14~39개의 태풍이 북태평양 서쪽에서 발생하였고, 태풍 개수와 최대풍속의 추세선을 보면 감소하는 경향을 보임.

업데이트 주기 1회/년

출처 일본기상청 베스트트랙 자료(국가태풍센터)
※ 베스트트랙: 태풍이 소멸한 뒤 인공위성과 육상 해상 등지에서 관측한 각종 자료를 정밀 재분석한 후 최종 확정한 태풍의 실제 이동 경로

출처 일본기상청 베스트트랙 자료(국가태풍센터)
※ 베스트트랙: 태풍이 소멸한 뒤 인공위성과 육상 해상 등지에서 관측한 각종 자료를 정밀 재분석한 후 최종 확정한 태풍의 실제 이동 경로

출처 일본기상청 베스트트랙 자료(국가태풍센터)
※ 베스트트랙: 태풍이 소멸한 뒤 인공위성과 육상 해상 등지에서 관측한 각종 자료를 정밀 재분석한 후 최종 확정한 태풍의 실제 이동 경로

출처 일본기상청 베스트트랙 자료(국가태풍센터)
※ 베스트트랙: 태풍이 소멸한 뒤 인공위성과 육상 해상 등지에서 관측한 각종 자료를 정밀 재분석한 후 최종 확정한 태풍의 실제 이동 경로
의의
지표면으로부터 물이 증발하여 대기에 수증기가 공급되고, 이는 구름 구성에 영향을 준다. 수증기는 구름과 복사로 인한 기후시스템에 중요한 피드백 역할을 한다.

기후변화와의 관련성
지표면 근처 습도는 인간, 가축, 야생 동물의 생활과 건강, 식물 질병의 발생 등에 영향을 줄 뿐만 아니라, 증발과 수자원 및 에너지 주기의 강도에도 영향을 미친다.

그래프

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
</tr>
<tr>
<td>그림설명</td>
</tr>
<tr>
<td>자료</td>
</tr>
<tr>
<td>의미</td>
</tr>
<tr>
<td>업데이트 주기</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
</tr>
<tr>
<td>그림설명</td>
</tr>
<tr>
<td>자료</td>
</tr>
<tr>
<td>의미</td>
</tr>
<tr>
<td>업데이트 주기</td>
</tr>
<tr>
<td>출처</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
</tr>
<tr>
<td>그림설명</td>
</tr>
<tr>
<td>자료</td>
</tr>
<tr>
<td>의미</td>
</tr>
<tr>
<td>업데이트 주기</td>
</tr>
</tbody>
</table>
최근 기후변화감시정보 활용 가이던스

평균 상대습도 계절평균

<table>
<thead>
<tr>
<th>설 명</th>
<th>평균 상대습도 계절평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>자료</td>
<td>국내 평균 상대습도에 대한 계절평균을 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개 지점의 계절별 평균 상대습도(1973~2018년)</td>
</tr>
<tr>
<td>의미</td>
<td>평균 상대습도의 주세션을 보면 전반적으로 감소하는 경향을 보이며, 특히 겨울철의 상대습도 하강폭이 가장 큽니다.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

2) 실효습도 계급별 발생일수(위치: 대기(기상요소) ▶ 수중기 ▶ 실효습도 계급별 발생일수)

<table>
<thead>
<tr>
<th>설 명</th>
<th>실효습도 계급별 연간 발생일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>자료</td>
<td>국내 실효습도 계급별 연간 발생일수 합계를 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개 지점의 실효습도 35% 이하 연간 발생일수 합계, 실효습도 25% 이하 연간 발생일수 합계(1974~2018년)</td>
</tr>
<tr>
<td>의미</td>
<td>실효습도 35% 이하 연간 발생일수 합계는 증가 경향을 보이고 있으며, 2000년 이후에는 과거보다 큰 폭으로 증가와 감소를 반복함. 실효습도 25% 이하 연간 발생일수 합계는 35% 이하 연간 발생일수보다 매우 적으나, 경향성은 비슷함.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>설 명</th>
<th>실효습도 계급별 월별 발생일수</th>
</tr>
</thead>
<tbody>
<tr>
<td>자료</td>
<td>국내 실효습도 계급별 월별 발생일수 합계를 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개 지점의 실효습도 35% 이하 월별 발생일수 합계, 실�霈습도 25% 이하 월별 발생일수 합계(1974~2018년)</td>
</tr>
<tr>
<td>의미</td>
<td>2000년 이후에는 과거보다 월별 실효습도 변화 폭이 매우 큽니다.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>설 명</th>
<th>실효습도 계급별 발생일수 월평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>자료</td>
<td>국내 실효습도 계급별 발생일수의 월평균을 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개 지점의 실효습도 35% 이하 발생일수 월평균, 실효습도 25% 이하 발생일수 월평균(1974~2018년)</td>
</tr>
<tr>
<td>의미</td>
<td>특히 1~2월 겨울철이 다른 계절에 비해 커진 값을 알 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
3. 상대습도 변화율 및 지점별 상대습도 (위치: 대기/기상요소) 수증기 상대습도 변화율 및 지점별 상대습도

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>상대습도 변화율 및 지점별 상대습도</td>
</tr>
<tr>
<td></td>
<td>상대습도 변화율 및 지점별 상대습도</td>
</tr>
<tr>
<td></td>
<td>상대습도 변화율 및 지점별 상대습도</td>
</tr>
</tbody>
</table>

4. 연관정보 (위치: 대기/기상요소) 수증기 연관정보

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>실효습도, 산불발생 건수, 산불피해 면적 협력</td>
</tr>
<tr>
<td></td>
<td>실효습도, 산불발생 건수, 산불피해 면적 월평균</td>
</tr>
<tr>
<td></td>
<td>도시 규모별 평균 상대습도 연평균</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>설명</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
<td>실효습도, 산불발생 건수, 산불피해 면적 협력</td>
</tr>
<tr>
<td>설명</td>
<td>국내 연평균 실효습도, 산불발생(건수, 면적) 협력을 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개 지점의 연평균 실효습도, 국내 산불발생 건수, 산불피해 면적(1974~2018년)</td>
</tr>
<tr>
<td>예</td>
<td>실효습도와 산불발생(건수, 면적)은 전체적으로 서로 반대 경향을 보임. 실효습도가 높을 때 산불발생 건수와 피해면적이 적었고, 실효습도가 낮을 때 산불발생피해가 많은 경향을 보임.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>설명</td>
<td>실효습도, 산불발생 건수, 산불피해 면적 월평균</td>
</tr>
<tr>
<td>설명</td>
<td>국내 실효습도, 산불발생 건수, 산불피해 면적 월평균을 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 45개 지점의 월평균 실효습도, 국내 산불발생 건수, 산불피해 면적(2003~2018년)</td>
</tr>
<tr>
<td>예</td>
<td>3~4월에 실효습도가 낮고 산불피해가 큽.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>설명</td>
<td>도시 규모별 평균 상대습도 연평균</td>
</tr>
<tr>
<td>설명</td>
<td>국내 도시 규모별 상대습도의 변화경향을 나타낸 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 도시규모별 연평균 평균 상대습도(1973~2018년)</td>
</tr>
<tr>
<td>예</td>
<td>도시 규모 분류 기준</td>
</tr>
<tr>
<td>대도시: 인구 100만 이상, 중소도시: 인구 5만 초과 100만 미만, 비도시: 인구 5만 이하</td>
<td></td>
</tr>
<tr>
<td>의미</td>
<td>모두 감소경향을 보이는 데 특히 대도시-중소도시-비도시 순으로 감소폭이 크게 나타남.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
의의
구름은 태양과 지구의 장단파 복사 에너지 수치 및 지표의 물수지에 대한 중요한 요소로서 지구의 기후에 큰 영향을 줍니다.

기후변화와의 관련성
구름은 지구로부터 돌아오는 햇빛을 반사하고 지구의 온도를 안정시켜서 중요한 역할을 합니다. 시시각각 변하는 구름은 복사 및 강수에 영향을 미치며, 이들은 대기 흐름에 영향을 받아 차례로 또 다른 많은 기후요소에 영향을 줍니다.

그래프

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
</table>
| **전운량 연월평균(위치: 대기(기상요소) ▶ 운량 ▶ 전운량 연월평균)** | 제목: 전운량 연월평균
그래프설명: 국내 전운량의 연도별 전국 평균을 나타낸 그래프
- 자료: 국내 13개 지점의 전운량 연평균(1973~2018년)
 ※ 운량 관측지점(13개): 춘천→북춘천(2016.10.1 이후), 서울, 인천, 수원, 서산→홍성(2017.11.1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수
업데이트 주기: 1회/년 |
| **전운량 연도별 월평균** | 제목: 전운량 연도별 월평균
그래프설명: 국내 전운량의 연도별 월평균을 나타낸 그래프
- 자료: 국내 13개 지점의 전운량 연도별 월평균(1973~2018년)
 ※ 운량 관측지점(13개): 춘천→북춘천(2016.10.1 이후), 서울, 인천, 수원, 서산→홍성(2017.11.1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수
의미: 월별로 증가 감소를 반복함.
업데이트 주기: 1회/년 |
| **전운량 월평균** | 제목: 전운량 월평균
그래프설명: 국내 전운량의 월별 전국 평균을 나타낸 그래프
- 자료: 국내 13개 지점의 전운량 월평균(1973~2018년)
 ※ 운량 관측지점(13개): 춘천→북춘천(2016.10.1 이후), 서울, 인천, 수원, 서산→홍성(2017.11.1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수
의미: 월별로 월별로 감소를 반복함.
업데이트 주기: 1회/년 |
제목
1. 맑음일수와 흐림일수 합계의 연평균

설 명
국내 전운량의 맑음일수와 흐림일수 합계의 연도별 전국 평균 그래프

- 자료: 국내 13개 지점의 맑음일수 합계 연평균, 흐림일수 합계 연평균 (1973~2018년)
- 전운량 계급: 맑음(전운량 2.4 이하), 구름조금(전운량 2.5~5.4), 구름많음(5.5~8.4), 흐림(전운량 8.5 이상)
- 운량 관측 지점(13개): 춘천(→북춘천(2016. 10. 1 이후)), 서울, 인천, 수원, 서산(→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수

업데이트 주기
1회/년

제목
2. 맑음일수와 흐림일수 합계의 계절평균

설 명
국내 전운량의 맑음일수와 흐림일수 합계의 계절별 전국 평균 그래프

- 자료: 국내 13개 지점의 맑음일수 합계 계절평균, 흐림일수 합계 계절평균(1973~2018년)
- 전운량 계급: 맑음(전운량 2.4 이하), 구름조금(전운량 2.5~5.4), 구름많음(5.5~8.4), 흐림(전운량 8.5 이상)
- 운량 관측 지점(13개): 춘천(→북춘천(2016. 10. 1 이후)), 서울, 인천, 수원, 서산(→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수

업데이트 주기
1회/년
연관정보(위치: 대기(기상요소) > 운량) > 연관정보

<table>
<thead>
<tr>
<th>제목</th>
<th>설명</th>
</tr>
</thead>
</table>
| 전운량, 상대습도, 일조시간 연평균 | 기본정보: 국내 연도별 전운량, 상대습도 전국 평균과 일조시간 합계 그래프
- 자료: 국내 13개 지점의 전운량 연평균, 평균 상대습도 연평균, 일조시간 연합계(1973~2018년)
※ 운량 관측 지점(13개): 춘천(→북춘천, 2016.10.1 이후), 서울, 인천, 수원, 서울, 울산, 광주, 부산, 목포, 여수
- 의미: 전운량과 상대습도는 비슷한 경향을 보이고, 전운량과 일조시간은 반대 경향을 보임.
- 업데이트 주기: 1회/년 |

| 전운량, 상대습도, 일조시간 월평균 | 기본정보: 국내 전운량, 상대습도, 일조시간의 월평균 그래프
- 자료: 국내 13개 지점의 전운량 월평균, 평균 상대습도 월평균, 일조시간 월평균(1973~2018년)
※ 운량 관측 지점(13개): 춘천(→북춘천, 2016.10.1 이후), 서울, 인천, 수원, 서울, 울산, 광주, 부산, 목포, 여수
- 의미: 여름철인 7월에 전운량과 상대습도가 높고 일조시간은 적다.
봄철에 일조시간이 많고, 겨울철에는 전운량과 상대습도가 낮고 해가 떠 있는 시간이 짧아져 일조시간이 적음.
- 업데이트 주기: 1회/년 |

| 전운량과 일교차 | 기본정보: 국내 전운량과 일교차의 상관관계 그래프
- 자료: 국내 13개 지점의 전운량 연평균, 일교차 연평균(1973~2018년)
※ 일교차: 일최고기온과 일최저기온의 차이
※ 운량 관측 지점(13개): 춘천(→북춘천, 2016.10.1 이후), 서울, 인천, 수원, 서울, 울산, 광주, 부산, 목포, 여수
- 의미: 구름은 낮에 태양 에너지를 반사시켜 최고기온을 낮추고, 밤에는 장파를 흡수하여 최저기온을 높이므로 운량이 많을수록 일교차가 적어짐.
- 업데이트 주기: 1회/년 |

40 종합 기후변화감시정보 활용 가이던스
의의
적설은 지면에 생긴 눈을 의미한다. 눈이 덧인 표면은 높은 알bedo를 가지며 열전도를 차단하며, 토양 수분 공급에 기여하기 때문에 기후 시스템에서 중요한 역할을 한다.

기후변화와의 관련성
- 기온과 강수의 경향 변동으로 눈 오는 지역도 변할 수 있다. 적설은 단순히 기후변화의 영향을 받을 뿐만 아니라 기후에 영향을 미치기도 함. 지면에 눈이 많이 쌓일수록 더 많은 에너지가 우주로 방출되어 냉각되는 반면, 눈이 적을수록 지구 표면에서 흡수되어 온난화가 일어날 수 있다.
- 강설량과 눈 내리는 시기의 변화는 붐질 여의의 산란, 하천과 지하수에 영향을 미친다. 또한 스키와 같은 겨울 레크리에이션 활동과 이러한 활동에 의존하는 지역사회에도 영향을 미칠 수 있음.

그래프 설명
① 적설 연월평균(위치: 육상 ▶ 적설 ▶ 적설 연월평균)

- 제목: 일최심적설과 눈 현상일수 합계 연평균
- 그림설명: 국내 일최심적설 합계와 눈 현상일수 합계의 연도별 전국 평균 그래프
 - 자료: 국내 13개 지점의 일최심적설, 눈 현상일수 합계(1973~2018년)
 ※ 눈은 겨울철에 발생하는 현상으로, 연도별 통계는 겨울철을 기준으로 함.
 ※ 적설 관측지자 직접 망원경으로 관측(목측)하는 요소로 조작계면에 따라 춘천과 서산은목포와 충남으로 각각 관측지점이 변경되어 이 지점의 자료를 연속으로 사용함.
 ※ 적설 관측 지점(13개): 춘천(→북춘천2016.10.1 이후), 서울, 인천, 수원,서산(→홍성2017.11.1 이후), 창주, 포항, 전주, 울산, 광주, 부산, 목포, 여수

- 의미: 일최심적설과 눈 현상일수 합계의 추세선은 감소 경향을 보임.
- 업데이트 주기: 1회/년

업데이트 주기: 1회/년

일최심적설과 눈 현상일수 합계 월평균

- 제목: 일최심적설과 눈 현상일수 합계 월평균
- 그림설명: 국내 일최심적설 합계와 눈 현상일수 합계의 월별 전국평균을 나타낸 그래프
 - 자료: 국내 13개 지점의 일최심적설, 눈 현상일수 합계 월평균(1973~2018년)
 ※ 적설 관측 지점(13개): 춘천(→북춘천2016.10.1 이후), 서울, 인천, 수원,서산(→홍성2017.11.1 이후), 창주, 포항, 전주, 울산, 광주, 부산, 목포, 여수

- 의미: 눈은 겨울철에 발생하는 현상이므로 1973년 10월부터 2019년 4월까지 월평균이며, 1월 일최심적설 합계 전국 평균은 12.6 cm, 눈 현상일수 합계의 전국 평균은 7일로 가장 많았음.
- 업데이트 주기: 1회/년
눈 시작일과 종료일 기간 변화경향

<table>
<thead>
<tr>
<th>설 명</th>
<th>그래프</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
<td>눈 시작일과 종료일 기간 변화경향</td>
</tr>
<tr>
<td>그림설명</td>
<td>국내 눈 시작일과 종료일의 평균 날짜를 나타낸 그래프</td>
</tr>
<tr>
<td></td>
<td>- 자료: 국내 13개 지점의 눈 시작일, 눈 종료일(1973~2018년)</td>
</tr>
<tr>
<td></td>
<td>※ 적설 관측 지점(13개): 춘천→북춘천(2016. 10. 1 이후), 서울, 인천, 수원, 서산→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수</td>
</tr>
<tr>
<td>의미</td>
<td>눈 시작일과 종료일은 늦어지고 빨라지고 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

눈 시작일과 종료일 기간 변화경향

적설 계급별 연간일수 비교(위치: 욕상 ▶ 적설 ▶ 적설 계급별 연간일수 비교)

<table>
<thead>
<tr>
<th>설 명</th>
<th>그래프</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
<td>적설 계급별 연간일수</td>
</tr>
<tr>
<td>그림설명</td>
<td>국내 일최심설적설 5, 20 cm 이상 발생 일수 합계를 나타낸 그래프</td>
</tr>
<tr>
<td></td>
<td>- 자료: 국내 13개 지점의 일최심설적설 5 cm 이상 발생 일수, 20 cm 이상 발생 일수(1973~2018년)</td>
</tr>
<tr>
<td></td>
<td>※ 눈은 관측자가 직접 맨눈으로 관측(목측)하는 요소로 조작제도에 따라 조작단과 서산은 복춘천과 홍성으로 각각 관측지점이 변경되어 이 지점의 자료를 연속으로 사용함.</td>
</tr>
<tr>
<td></td>
<td>※ 적설 관측 지점(13개): 춘천→ 복춘천(2016. 10. 1 이후), 서울, 인천, 수원, 서산→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수</td>
</tr>
<tr>
<td>의미</td>
<td>일최심설적설 5 cm 이상 발생 일수는 점차 줄어들고 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

적설 계급별 연간일수

일최심설적설 최댓값과 합계, 눈 현상일수 합계

<table>
<thead>
<tr>
<th>설 명</th>
<th>그래프</th>
</tr>
</thead>
<tbody>
<tr>
<td>제목</td>
<td>일최심설적설 최댓값과 합계, 눈 현상일수 합계</td>
</tr>
<tr>
<td>그림설명</td>
<td>국내 일최심설적설 최댓값과 합계, 눈 현상일수 합계를 나타낸 그래프</td>
</tr>
<tr>
<td></td>
<td>- 자료: 국내 13개 지점의 일최심설적설 최댓값, 합계, 눈 현상일수 합계(1973~2018년)</td>
</tr>
<tr>
<td></td>
<td>※ 적설 관측 지점(13개): 춘천→ 복춘천(2016. 10. 1 이후), 서울, 인천, 수원, 서산→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수</td>
</tr>
<tr>
<td>의미</td>
<td>일최심설적설의 최댓값은 증가하고 일최심설적설 합계와 눈 현상일수 합계는 줄어들고 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
3. 지점별 연대별 적설강도 변화

제목: 지점별 연대별 적설강도 변화

설명: 국내 연대별 적설강도 분포도 및 각 지점별 적설강도 변화경향을 나타낸 그래프
- 자료: 국내 13개 지점의 연대별 적설강도(1973~2018년)

※ 눈은 겨울철에 발생하는 현상으로, 연도별 통계는 겨울철을 기준으로 함.
(예, 적설 1973년 자료는 1973년 10월부터 1974년 4월까지 통계임)
※ 눈은 관측자가 직접 맨눈으로 관측(목측)하는 요소로 조직개편에 따라 춘천과 서산은
북춘천과 홍성으로 각각 관측지점이 변경되어 이 지점의 자료를 연속으로 사용함.
※ 적설 관측 지점(13개): 춘천→북춘천(2016. 10. 1 이후), 서울, 인천, 수원, 서산→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수
※ 적설강도(%) = 최심신적설 5cm 이상 발생일수 / 최심신적설 0cm 이상 발생일수 * 100

의미: 적설강도는 일최심신적설 5cm 이상 발생일수를 일최심신적설 0cm 이상
발생일수로 나눈 후 100을 곱한 것으로, 강한 눈이 내리는 정도를 알 수 있음.

업데이트 주기: 1회/년

4. 지점별 일최심신적설과 눈 현상일수

제목: 지점별 눈 현상일수 변화율, 지점별 일최심신적설 최댓값과 합계, 눈 현상일수 합계

설명: 국내 눈 현상일수 변화율 분포도 및 각 지점별 일최심신적설 최댓값과 합계, 눈 현상일수 합계를 나타낸 그래프
- 자료: 국내 13개 지점의 눈 현상일수 변화율 및 일최심신적설 최댓값과 합계, 눈 현상일수 합계
- 기간: 1973~2018년

※ 눈은 겨울철에 발생하는 현상으로, 연도별 통계는 겨울철을 기준으로 함.
(예, 적설 1973년 자료는 1973년 10월부터 1974년 4월까지 통계임)
※ 눈은 관측자가 직접 맨눈으로 관측(목측)하는 요소로 조직개편에 따라 춘천과 서산은
북춘천과 홍성으로 각각 관측지점이 변경되어 이 지점의 자료를 연속으로 사용함.
※ 적설 관측 지점(13개): 춘천→북춘천(2016. 10. 1 이후), 서울, 인천, 수원, 서산→홍성(2017. 11. 1 이후), 청주, 포항, 전주, 울산, 광주, 부산, 목포, 여수
※ 변화율: 선의 두 점 사이의 수직 거리를 수평 거리로 나눈 회귀직선의 기울기

의미: 국내 13개 지점의 눈 현상일수 변화율과 지점별 일최심신적설 최댓값과 합계, 눈 현상일수 합계를 알 수 있음.

업데이트 주기: 1회/년
일최심신적설일수와 결빙일수 연평균

그래프 설명

제목: 일최심신적설일수와 결빙일수 연평균

- 자료: 국내 13개 지점의 일최심신적설일수, 결빙일수(1973~2018년)
- 눈은 겨울철에 발생하는 현상으로, 연도별 통계는 겨울철을 기준으로 함.
 (예, 1973년 자료는 1973년 10월부터 1974년 4월까지 통계임)
- 눈은 관측자가 직접 맨눈으로 관측하는 요소로 조직개편에 따라 춘천과 서산은
 북춘천과 홍성으로 각각 관측지점이 변경되어 이 지역의 자료를 연속으로 사용함.
- 결빙일수: 일최고기온이 0°C 미만인 날

의미: 일최심신적설일수와 결빙일수 모두 감소 추세를 보임.

업데이트 주기: 1회/년
해수면 높이

의의
거시변화로 인한 해수면 상승은 저지대 지역의 연안 침수와 침식을 초래할 수 있고, 이러한 변화는 연안생태계, 수자원 및 인간의 활동에 큰 영향을 미침.

기후변화와의 관련성
해수면 높이 상승은 이온 기후현상의 주기 및 강도와 함께 기후변화의 주요 영향 중 하나이며, 저지대 지역에 큰 영향을 미칠. 해수면 높이 변화는 기후변화 측정의 주요 지표가 되며, 기후시스템 모델링 역량과도 관련이 있음. 현재 해수면 상승 크기와 증가율은 지구 열 합량과 육상 열의 용해에 의한 해양 열팽창 정도에 따라 결정됨.

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 연평균 해수면 높이(조위관측소)</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>1989년도 이후 국내 21개 조위관측소에서 해수면 높이가 변화하는 경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>국내 조위관측소 21개 지점(1989~2017년)의 연평균 해수면 높이값</td>
</tr>
<tr>
<td>의미</td>
<td>해수면 높이는 전체적으로 증가하는 추세이며, 2017년 연평균 해수면 높이는 1989년 대비 51.5mm 높았음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>국립해양조사원</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>전지구 연평균 해수면 높이</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>1880년도 이후 전지구적으로 해수면 높이가 변화하는 경향을 보여주는 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>전지구 연평균 해수면 높이값(1880~2013년)</td>
</tr>
<tr>
<td>의미</td>
<td>1880년 0.0mm를 기준으로 점차 상승하고 있으며, 2012년은 1880년 대비 234.8mm로 가장 높았음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>호주연방과학원(CSIRO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 지점별 해수면 높이와 상승률</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>지점별 해수면 높이 변화 경향을 나타내는 그래프임</td>
</tr>
<tr>
<td>자료</td>
<td>지점별 해수면 연평균 높이(1989~2017년)</td>
</tr>
<tr>
<td>의미</td>
<td>2017년에 전 지점에서 1989년 대비 해수면 높이가 높아졌으며, 거문도가 1989년 대비 13.5cm로 가장 높이 증가했음</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>
해양

해수면온도

- 의의
해양은 대기보다 더 큰 열함량을 가지고 있으며, 상층부에 주로 저장된 열은 해류에 의해 수송되어 지역 기후에 영향을 미치거나, 대규모 남북순환에 의해 전지구 규모로 기후에 영향을 미침.

- 기후변화와의 관련성
 - 해수면온도의 변화는 해양 순환 패턴, 해양 생물의 종 조성, 서식지 환경 교란 등을 초래할 수 있으며, 어획량 변화에 따른 식량 자원의 변화와도 밀접하게 연관되어 있음.
 - 강수량과 태풍의 경로, 강도의 변화에 영향을 미치는 등 기상 시스템과도 밀접하게 관련이 있음.

<table>
<thead>
<tr>
<th>그래프</th>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 국내외 해수면온도(위치: 해양 → 해수면온도 → 국내외 해수면온도)</td>
<td></td>
</tr>
</tbody>
</table>

국내 연평균 해수면온도 편차

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 연평균 해수면온도 편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 정선해양관측지점의 연평균 해수면온도 편차 그래프</td>
</tr>
<tr>
<td>- 지점: 정선 해양조사 25개선 207개 정점</td>
<td></td>
</tr>
<tr>
<td>- 기간: 1968~2017년</td>
<td></td>
</tr>
<tr>
<td>※ 해수면온도 편차: 연평균 해수면온도와 평년(1981~2010년 평균: 16.9℃)간의 차이</td>
<td></td>
</tr>
<tr>
<td>의미</td>
<td>연평균 해수면온도 편차 그래프의 추세선을 보면, 증가경향을 보임.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>국립수산과학원</td>
</tr>
</tbody>
</table>

국내 해역별 연평균 해수면온도

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 해역별 연평균 해수면온도</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 정선해양관측지점에 대한 해역별 연평균 해수면온도 그래프</td>
</tr>
<tr>
<td>- 지점: 정선 해양조사 25개선 207개 정점</td>
<td></td>
</tr>
<tr>
<td>- 기간: 1968~2017년</td>
<td></td>
</tr>
<tr>
<td>의미</td>
<td>남해>동해>서해 순으로 해수면온도가 높았으며, 이는 남해가 상대적으로 저위도에 위치하고 있어 태양복사에너지가 많이 받아 높은 수온이 나타난다고 볼 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>국립수산과학원</td>
</tr>
</tbody>
</table>
종합 기후변화감시정보 활용 가이드라인

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>표 47 종합 기후변화감시정보 활용 가이드라인</td>
</tr>
</tbody>
</table>

① 전지구 연평균 해수면온도 변화

<table>
<thead>
<tr>
<th>제목</th>
<th>전지구 연평균 해수면온도 변화 그래프</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>전지구 연평균 해수면온도 변화 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>전지구 연평균 해수면온도 변화</td>
</tr>
<tr>
<td>기간</td>
<td>1891~2017년</td>
</tr>
<tr>
<td>※</td>
<td>해수면온도 변화: 연평균 해수면온도와 평년(1981~2010년 평균: 18.21℃) 값의 차이</td>
</tr>
<tr>
<td>의미</td>
<td>2017년의 연평균 해수면온도 변화는 +0.26℃로, 1891년 이후 3번째로 높았고 엘니뇨가 발생하지 않은 해 중 가장 높은 수치임.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>일본기상청</td>
</tr>
</tbody>
</table>

② 국내 지정별 해수면온도와 기온

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 지정별 해수면온도와 기온</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 해수면온도와 기온의 월평균 그래프</td>
</tr>
<tr>
<td>자료</td>
<td>해양기상부이 17개 지점별 해수면온도와 평균기온의 월평균 그래프</td>
</tr>
<tr>
<td>(동해)</td>
<td>울릉도, 동해, 포항, 울산, 울진</td>
</tr>
<tr>
<td>(서해)</td>
<td>웅도, 철도, 월진도, 신안, 인천, 부안</td>
</tr>
<tr>
<td>(남해)</td>
<td>거문도, 거제도, 마라도, 추자도, 서귀포, 통영</td>
</tr>
<tr>
<td>의미</td>
<td>해수면온도와 기온은 비례 관계에 있으며, 비열 차이로 인해 겨울철의 해수면온도가 기온보다 높게 나타남.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
</tbody>
</table>

③ 국내 해수면온도 변화율 분포도

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 해수면온도 변화율 분포도</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>국내 해수면온도 변화율 분포도</td>
</tr>
<tr>
<td>자점</td>
<td>정선, 해양조사 25개선 207개 정점</td>
</tr>
<tr>
<td>기간</td>
<td>1968~2017년</td>
</tr>
<tr>
<td>의미</td>
<td>동해에서 0.702.06℃, 서해에서 0.252.45℃ 증가하는 경향을 보였고, 남해에서 한 지점만(34.45°N, 128.01°E) -0.04℃ 감소하고, 그 밖의 정점에서 최대 1.86℃ 증가하였음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>국립수산과학원</td>
</tr>
</tbody>
</table>
4. 연관정보(위치: 해양 ▶ 해수면온도 ▶ 연관정보)

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 해수면온도와 해수면높이, 평균기온 비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>설명</td>
<td>국내 연평균 해수면온도 편차, 연평균 해수면높이, 평균기온 편차를 비교한 그래프</td>
</tr>
<tr>
<td></td>
<td>※ 해수면온도 편차: 연평균 해수면온도와 평년(1981~2010년 평균: 16.9℃)의 차이</td>
</tr>
<tr>
<td></td>
<td>※ 연평균기온 편차: 연평균기온과 평년(1981~2010년 평균: 12.5℃)의 차이</td>
</tr>
<tr>
<td></td>
<td>※ 해수면높이: 1989년의 해수면높이(0.0mm)를 기준으로 함.</td>
</tr>
<tr>
<td>의미</td>
<td>국내 해수면온도와 해수면높이, 평균기온 모두 증가 경향을 보임.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>국립수산과학원(해수면온도), 국립해양조사원(해수면높이)</td>
</tr>
</tbody>
</table>

전지구 해수면온도와 해수면높이, 평균기온 비교

<table>
<thead>
<tr>
<th>제목</th>
<th>전지구 해수면온도와 해수면높이, 평균기온 비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>설명</td>
<td>전지구 연평균 해수면온도 편차, 연평균 해수면높이, 평균기온 편차를 비교한 그래프</td>
</tr>
<tr>
<td></td>
<td>자료(기간): 전지구 연평균 해수면온도 편차(18912017년), 전지구 연평균 해수면높이(18802013년), 전지구 연평균기온 편차(1891~2017년)</td>
</tr>
<tr>
<td></td>
<td>※ 해수면온도 편차: 연평균 해수면온도와 평년(1981~2010년 평균: 18.21℃)의 차이</td>
</tr>
<tr>
<td></td>
<td>※ 연평균기온 편차: 연평균기온과 평년(1981~2010년 평균: 12.5℃)의 차이</td>
</tr>
<tr>
<td></td>
<td>※ 해수면높이: 1880년의 해수면높이(0.0mm)를 기준으로 함.</td>
</tr>
<tr>
<td>의미</td>
<td>전지구 해수면온도와 해수면높이, 평균기온 모두 증가 경향을 보임.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>일본기상청(해수면온도, 평균기온), 호주연방과학원(해수면높이)</td>
</tr>
</tbody>
</table>

국내 해수면온도와 고수온 피해현황 비교

<table>
<thead>
<tr>
<th>제목</th>
<th>국내 해수면온도와 고수온 피해현황 비교</th>
</tr>
</thead>
<tbody>
<tr>
<td>설명</td>
<td>국내 정선해양관측지점의 연평균 해수면온도와 고수온에 따른 피해 현황을 비교한 그래프</td>
</tr>
<tr>
<td></td>
<td>자료: 정선 해양조사 25개선 207개 정점 연평균 해수면온도, 고수온에 따른 피해액</td>
</tr>
<tr>
<td></td>
<td>기간: 2012~2017년</td>
</tr>
<tr>
<td>의미</td>
<td>연평균 해수면온도의 증가와 고수온 피해현황이 비례하는 것을 알 수 있음.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/년</td>
</tr>
<tr>
<td>출처</td>
<td>국립수산과학원(해수면온도), 해양수산부(고수온 피해현황)</td>
</tr>
</tbody>
</table>
미의
지구온난화는 해빙의 감소를, 해빙의 감소는 다시 북극권의 온난화를 일으키는 역억제 작용이 나타나, 해빙변동성은 기후변화-변화의 주요지표임.

기후변화와의 관련성
- 해빙은 지구에 입력하는 태양에너지를 반사시켜 극지방을 차갑게 유지함으로써 지구의 평균기온을 반점하게 유지함. 최근 지구온난화의 영향으로 북극지역의 기온이 상승함에 따라 북극해빙이 빠르게 감소하고 있음.
- 북극 해빙 감소는 대기 순환에 영향을 미쳐, 북극해 인근 지역 뿐 아니라 중위도의 기후변화에도 영향을 미침. 연구결과에 따르면 최근 증가하고 있는 한파, 가뭄, 폭염 등도 해빙 감소와 관련이 높음.

그래프

<table>
<thead>
<tr>
<th>설 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 해빙 분포도(위치: 해양 ▶ 해빙 ▶ 해빙 분포도)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>북극 해빙 면적의 7일 평균 분포도</th>
</tr>
</thead>
<tbody>
<tr>
<td>자료</td>
<td>해빙면적의 7일 동안의 평균 분포도(1988~현재)</td>
</tr>
<tr>
<td>의미</td>
<td>태양에너지의 계절적인 변화로 겨울철에 증가하고 여름철에 감소하며, 최근 지구온난화의 영향으로 북극해빙이 지속적으로 감소하고 있으며 특히 여름철에 급격한 해빙감소가 나타남.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/1주일</td>
</tr>
<tr>
<td>출처</td>
<td>북극해빙감시시스템(국가기상위성센터)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제목</th>
<th>해빙 표면거칠기의 7일 평균 분포도</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림설명</td>
<td>지정한 7일간의 해빙 표면거칠기를 평균하여 산출한 해빙 표면거칠기의 분포를 나타내는 그림.</td>
</tr>
<tr>
<td>자료</td>
<td>해빙 표면거칠기의 7일 동안의 평균 분포도(1988~현재)</td>
</tr>
<tr>
<td>※ 해빙표면거칠기: 해빙표면의 울퉁불퉁한 정도를 수치로 표현한 것으로, 해빙표면의 몰착성에 의함</td>
<td></td>
</tr>
<tr>
<td>의미</td>
<td>해빙 표면거칠기는 해빙 영역별로 상이하게 나타남.</td>
</tr>
<tr>
<td>업데이트 주기</td>
<td>1회/1주일</td>
</tr>
<tr>
<td>출처</td>
<td>북극해빙감시시스템(국가기상위성센터)</td>
</tr>
</tbody>
</table>
2. 해빙 연변화(위치: 해양 ▶ 해빙 ▶ 해빙 연변화)

제목
해빙 면적의 연 변화

설명
지정된 7일 동안의 해빙 면적 평균값으로 용도별, 월별 변화경향을 볼 수 있는 그래프임.

- 자료: 연도별(2000~2018) 지정된 7일 동안의 해빙면적 평균값

의미
해빙면적은 보이던 점차 해빙면적은 줄어들고 있으며, 월별로 3월에 최댓값, 9월에 최솟값을 보임.

업데이트 주기
1회/년

출처
북극해빙감시시스템(국가기상위성센터)

3. 해빙 표면거칠기의 연 변화

제목
해빙 표면거칠기의 연 변화

설명
지정된 7일 동안의 해빙 표면거칠기 평균값으로 용도별, 월별 변화경향을 볼 수 있는 그래프임.

- 자료: 연도별(2000~2018) 지정된 7일 동안의 해빙표면거칠기 평균값

의미
해빙표면거칠기는 해빙이 녹는 시기를 추측할 수 있어, 감소하는 시기가 더욱 의미 있음. 해빙표면거칠기는 3월부터 점차 감소하여, 8~9월에 최솟값을 보임. 해빙면적의 연 변화와 경향이 일치함.

업데이트 주기
1회/년

출처
북극해빙감시시스템(국가기상위성센터)

3. 연관정보(위치: 해양 ▶ 해빙 ▶ 연관정보)

북극 해빙 최대면적 편차(3월)와 전지구 기온편차 비교

제목
북극 해빙 최대면적 편차와 전지구 기온편차 비교

설명
전지구기온과 해빙 면적의 변화경향을 보여주는 그래프임.

- 해빙면적편차 기준년도: 1988~2017년
- 전지구기온편차 기준년도: 1981~2010년

의미
해빙면적이 최대인 3월의 해빙면적 편차는 1988년 0.8㎢에서 2017년 -1.2㎢, 해빙면적이 최소인 9월의 해빙면적 편차는 1988년 1.7㎢에서 2017년 -1.2㎢를 기록함.

업데이트 주기
1회/년

출처
북극해빙감시시스템(국가기상위성센터)
의의
지구 표면의 바람은 대기와 해양 사이의 운동량 교환을 촉진하여 해양 파동을 생성하며, 열과 탄소를 전세계로 운송하는 해양 순환의 핵심 역할을 함.

기후변화와의 관련성
강한 풍랑, 태풍은 엄청난 사회적, 경제적 피해를 끼치며, 인명과 생태계 손실 등에 영향을 미침. 특히 해양 안전, 해양 운송, 구조물에 대한 피해는 물론 해변의 침식 등에도 영향을 줌.

그래프 설명

<table>
<thead>
<tr>
<th>제목</th>
<th>유의파고 평균 및 최고</th>
</tr>
</thead>
</table>

- **유의파고 평균 및 최고**

<table>
<thead>
<tr>
<th>위치</th>
<th>유의파고 평균 및 최고</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>해역</th>
<th>역량타</th>
<th>막대그래프</th>
</tr>
</thead>
<tbody>
<tr>
<td>서해충부</td>
<td>용정도, 서문도</td>
<td>빨간색</td>
</tr>
<tr>
<td>서해남부</td>
<td>거문도, 포항</td>
<td>파란색</td>
</tr>
<tr>
<td>서해북부</td>
<td>갈바도, 용문도</td>
<td>복합색</td>
</tr>
<tr>
<td>남해동부</td>
<td>두미도, 진해도</td>
<td>상파색</td>
</tr>
<tr>
<td>동해남부</td>
<td>울릉도, 해금강도</td>
<td>하반색</td>
</tr>
<tr>
<td>제주도</td>
<td>마라도, 제주항</td>
<td>하반색</td>
</tr>
</tbody>
</table>

의미 국내 해역별 최근 5년 및 지난해 현재 월에 대한 유의파고 평균 및 최고값을 순별(상순, 중순, 하순)로 알 수 있으며, 평균 유의파고는 막대 그래프, 최고 유의파고는 점으로 표현하였으며, 최근 5년 값은 붉은색, 지난해 값은 파란색으로 나타남.

| 업데이트 주기 | 1회/월 |

![유의파고 평균 및 최고 그래프](image)
2. 유의파고 분포

<table>
<thead>
<tr>
<th>해역</th>
<th>엔바다</th>
</tr>
</thead>
<tbody>
<tr>
<td>서해안부</td>
<td>맥도, 외만도, 인천</td>
</tr>
<tr>
<td>서해안부</td>
<td>산양, 진도, 욕동, 영동, 군산, 영광부도, 임해주, 임주도</td>
</tr>
<tr>
<td>서해안부</td>
<td>장법인, 신안, 부안</td>
</tr>
<tr>
<td>서해안부</td>
<td>세척도, 주지도</td>
</tr>
<tr>
<td>남해안부</td>
<td>기제도, 동영</td>
</tr>
<tr>
<td>동해안부</td>
<td>울릉도, 동래, 목포</td>
</tr>
<tr>
<td>제주도</td>
<td>마라도, 서귀포</td>
</tr>
</tbody>
</table>

3. 해양기상부이 해상풍 특성

<table>
<thead>
<tr>
<th>해역</th>
<th>엔바다</th>
</tr>
</thead>
<tbody>
<tr>
<td>서해안부</td>
<td>맥도, 외만도, 인천</td>
</tr>
<tr>
<td>서해안부</td>
<td>산양, 진도, 욕동, 영동, 군산, 영광부도, 임해주, 임주도</td>
</tr>
<tr>
<td>서해안부</td>
<td>장법인, 신안, 부안</td>
</tr>
<tr>
<td>서해안부</td>
<td>세척도, 주지도</td>
</tr>
<tr>
<td>남해안부</td>
<td>기제도, 동영</td>
</tr>
<tr>
<td>동해안부</td>
<td>울릉도, 동래, 목포</td>
</tr>
<tr>
<td>제주도</td>
<td>마라도, 서귀포</td>
</tr>
</tbody>
</table>

업데이트 주기
- 유의파고 분포: 1회/월
- 해양기상부이 해상풍 특성: 1회/월
4. 과거 풍량특보일 수 (위치: 해양 > 해상풍 > 과거 풍량특보일 수)

<table>
<thead>
<tr>
<th>해역</th>
<th>과거 풍량특보일 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>서해중부 앞바다, 서해중부 먼바다, 서해남부 앞바다, 서해남부 먼바다, 남해서부 먼바다, 남해서부 앞바다, 남해동부 앞바다, 남해동부 먼바다, 동해중부, 동해중앙부, 동해남부 앞바다, 동해남부 먼바다, 제주도 남쪽 먼바다, 제주도 앞바다</td>
<td></td>
</tr>
</tbody>
</table>

의미
최근 5년(14~18년) 및 지난해(18년) 현재 월에 대한 풍량특보일 수를 나타낸 그래프
- 통계 해역:

5. 해수면온도 실황 및 예측 (위치: 해양 > 해상풍 > 해수면온도 실황 및 예측)

<table>
<thead>
<tr>
<th>해역</th>
<th>해수면온도 실황 및 예측</th>
</tr>
</thead>
<tbody>
<tr>
<td>서해중부 앞바다, 서해중부 먼바다, 서해남부 앞바다, 서해남부 먼바다, 남해서부 먼바다, 남해서부 앞바다, 남해동부 앞바다, 남해동부 먼바다, 동해중부, 동해중앙부, 동해남부 앞바다, 동해남부 먼바다, 제주도 남쪽 먼바다, 제주도 앞바다</td>
<td></td>
</tr>
</tbody>
</table>

의미
국내 해역별 최근 5년 및 지난해 현재 월에 대한 풍량특보일 수를 순별(상순, 중순, 하순)로 알 수 있음. 최근 5년 값은 붉은색, 지난해 값은 파란색 막대 그래프로 나타냄.

업데이트 주기 1회/월
자료통계방법

<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
</table>
| 이산화탄소 (CO₂) | 5초 | <일력자료 선정>
1. 장비유지보수 일지를 참조하여 관측자가 농도에 영향을 줄 것으로 판단된 플래깅을 원시자료에서 제거
2. 이산화탄소 표준가스 교정기간 제거

시간평균
3. ①과 ②의 선정된 자료를 중심으로, 시간 평균을 구한 뒤
4. 시간평균의 표준편차가 A보다 크고 연속된 앞 뒤 시간평균값의 차이가 B이상 차이가 나면, 시간자료 기각
 * 인연도: (A) 1.8 ppm, (B) 1.8 ppm
 * 고 산: (A) 1 ppm, (B) 1 ppm
 * 올링도: (A) 0.8 ppm, (B) 0.8 ppm
 * 독 도: (A) 0.4 ppm, (B) 0.6 ppm
 * 자료의 약 30 ~ 32 % 가각됨

일평균, 월평균
5. ③의 시간평균 자료가 n개 이상일 때 1차 일평균 산정
 * 인연도: (n) 15개, 나머지 관측소: (n) 10개
6. ④의 선택된 일평균 자료에 대해 장기추세와 자연변동을 고려한 다항식으로 커브피팅
7. 시간평균 = 커브피팅 = 장차(a) 산정
8. 전차(a)에 대해 단주기성분제거(low pass filtering, 주기: 7.3 cycle/yr)한 장차(b) 생성
9. 전차(a) < 전차(b)의 0.3안에 들어있으면, 그 때의 일자료 선택
 * 인연도 = 전차(b)의 20, 고산, 올링도, 독도는 전차(b)의 3σ
10. ⑥ ~ ⑨ 번 5번 반복
11. 최종 남은 장차(b) + 커브피팅 = 일평균, 연평균결정
 * 대류권 화학성분의 분반구 균질화 주기 7.3 cycle/yr 반영
 (Thoning et al., 1989)

| 메탄(CH₄) | 5초 | <일력자료 선정>
1. 메탄 표준가스를 이용하여 농도 재산정(표준가스 6시간마다 주입)
2. 장비유지보수 일지를 참조하여 관측자가 농도에 영향을 줄 것으로 판단된 플래깅을 원시자료에서 제거

시간평균
3. ①과 ②의 선정된 자료를 중심으로, 시간 평균을 구한 뒤
4. 시간평균의 표준편차가 A보다 크고 연속된 앞 뒤 시간평균값의 차이가 B이상 차이가 나면, 시간자료 기각
 * 인연도: (A) 9 ppb, (B) 16 ppb
 * 고 산: (A) 4.5 ppb, (B) 8.5 ppm
 * 올링도: (A) 4 ppb, (B) 5.5 ppb
 * 자료의 약 30 % 가각

일평균, 월평균
5. ②의 시간평균 자료가 6개 이상일 때 1차 일평균 산정
6. ②의 선택된 일평균 자료에 대해 장기추세와 자연변동을 고려한 다항식으로 커브피팅
7. 시간평균 = 커브피팅 = 장차(a) 산정
8. 전차(a)에 대해 단주기성분제거(low pass filtering, 주기: 7.3 cycle/yr)한 장차(b) 생성
9. 전차(a) < 전차(b)의 0.3안에 들어있으면, 그 때의 일자료 선택
10. ⑥ ~ ⑨ 번 5번 반복
11. 최종 남은 장차(b) + 커브피팅 = 월평균, 연평균결정
 * 대류권 화학성분의 분반구 균질화 주기 7.3 cycle/yr 반영
 (Thoning et al., 1989)
<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
</table>
| 육불화황 (SF₆) | 1시간 | <입력자료 선정>
 ① 육불화황 표준가스를 이용하여 농도 재산정 (표준가스 6시간마다 주입)
 ② 장비유지보수 일지를 참조하여 관측자가 농도에 영향을 줄 것으로 판단된 플래깅을 원시자료에서 제거
| ①과 ②의 선정된 자료를 중심으로
 ② 연속된 앞 뒤값의 차이가 A 이상 차이가 나면, 시간자료 기각
 * 인연도: (A) 1 ppt
 * 전체자료의 연속값의 차이값 분포를 통해 상위 90%, 하위 10% 값을 기준함
| <일평균, 월평균> ※ O’Doherty et al., 2001
 ④ 선파된 날을 기준으로 ±60일의 최저 시간값을 이용하여 이차함수로 fitting함
 ⑤ 시간평균 자료가 6개 이상일 때 1차 일평균산정
 ⑥ 선파된 일평균 자료에 대해 장기추세와 자연변동을 고려한 다항식으로 커브피팅
 ⑤의 선택된 일평균 자료에 대해 단주기성분제거(low pass filtering, 주기: 7.3 cycle/yr)한 잔차(b) 생성
 ⑥에서 잔차(b)의 30일에 들어있으면, 그 때의 일자로 선택
| 아산화질소 (N₂O) | 1시간 | <입력자료 선정>
 ① 아산화질소 표준가스를 이용하여 농도 재산정(표준가스 6시간마다 주입)
 ② 장비유지보수 일지를 참조하여 관측자가 농도에 영향을 줄 것으로 판단된 플래깅을 원시자료에서 제거
| ①과 ②의 선정된 자료를 중심으로
 ② 시간자료의 연속된 앞 뒤값의 차이가 A 이상 차이가 나면, 시간자료 기각
 * 인연도: (A) 1.6 ppb, 고산: (A) 1.4 ppb
 * 자료의 약 30 ~ 32 % 기각됨
| <일평균, 월평균>
 ⑤ ④의 시간평균 자료가 6개 이상일 때 1차 일평균산정
 ⑥ ⑤의 선택된 일평균 자료에 대해 장기추세와 자연변동을 고려한 다항식으로 커브피팅
 ⑦ 관측값 - 커브피팅 = 잔차(a) 산정
 ⑧ 잔차(a)에 대해 단주기성분제거(low pass filtering, 주기: 7.3 cycle/yr)한 잔차(b) 생성
 ⑨ 잔차(a) < 잔차(b)의 30안에 들어있으면, 그 때의 일자로 선택
| ⑥와 ⑨ 번 5번 반복 후
| 최종 남은 잔차(b) + 커브피팅 = 월평균, 연평균확정
 * 대류권 화학성분의 분반구 균질화 추계 7.3 cycle/yr 반영 (Thoning et al., 1989) |
<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>염화불화탄소류 (CFCs)</td>
<td>1시간</td>
<td></td>
</tr>
</tbody>
</table>

- <입력자료 선정>
 ① 염화불화탄소류의 표준가스를 이용하여 농도 재산정 (표준가스 6시간마다 주입)
 ② 장비유지보수 일지를 참조하여 관측자가 농도에 영향을 줄 것으로 판단된 플래깅을 원시자료에서 제거

- <시간자료 선정>
 ③ ①과 ②의 선정된 자료를 중심으로
 ④ 연속된 앞 뒤값의 차이가 A 이상 차이가 나면, 시간자료 기각
 * CFC-11: (A) ±4 ppt, CFC-12: (A) ±5 ppt, CFC-113: (A) ±1.5 ppt
 * 전체자료의 연속값의 차이값 분포를 통해 상위 90%, 하위 10% 값을 기준함

- <일평균, 월평균> ※ O'Doherty et al., 2001
 ⑤ 선별된 날을 기준으로 ±60일의 최저 시간값을 이용하여 이차함수로 fitting함
 ⑥ fitting 값 전처리의 중간값을 산출
 ⑦ 산출된 중간값보다 낮은 농도의 표준편차(σ) 산출
 ⑧ 중간값 + 3σ의 합보다 낮으면 배경농도로 선별
 ⑨ 선별된 배경농도 시간자료를 중심으로 일평균 산정
 ⑩ ⑨를 이용하여 월평균 산정
<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>오존(O₃)</td>
<td>1시간</td>
<td>통계 최소자릿수: 0.1, 생산자료 → 시간통계 → 일통계 → 월통계 → 연통계</td>
</tr>
<tr>
<td>일산화탄소(CO)</td>
<td></td>
<td><시간 통계></td>
</tr>
<tr>
<td>질소산화물(NOₓ)</td>
<td></td>
<td>- 자료기간: 생산자료를 이용하여 해당 시간의 00분 이후부터 59분까지의 1시간에 대하여 통계</td>
</tr>
<tr>
<td>이산화황(SO₂)</td>
<td></td>
<td>- 자료종류: 시간평균자료</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 산출방법</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 제거 후 생산자료가 시간당 66% 이상일 때 산출(1분자료 40개 이상)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 소수 두 번째 자리까지 계산하여 반올림</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 산출식</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\bar{X} = \frac{X_1 + X_2 + \ldots + X_{n-1} + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CO는 주기적으로 분석하는 zero값으로 표류오차값을 보정함. 예) 04시 zero = 5 ppb, 06시 zero = 10 ppb라면 2시간동안 5ppb가 선형적으로 증가하였다고 가정하여 관측값에서 뺄 줄.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- NOx자료 중 NO는 전일 밤 10시 ~ 당일 새벽 2시의 NO 평균을 zero 값으로 산출하여 연속된 날의 zero값과 zero값 사이를 선형내삽한 후 관측값에서 뺄 줄.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 때 O₃ < 20 ppb인 경우 NO 고농도시기에 보고 zero값 산출하지 않음</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 일통계 ></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자료기간: 시간평균자료가 하루 75% 이상일 때 산출(시간자료 18개 이상)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자료종류: 일평균</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 산출방법: 시간통계와 같음</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 월통계 ></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자료기간: 일자료가 50% 이상일 때 산출</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자료종류: 월평균</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 산출방법: 시간통계와 같음</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 연통계 ></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자료기간: 해당 연의 1월부터 12월까지의 1년간에 대하여 통계</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 자료종류: 연평균</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 산출방법: 시간통계와 같음</td>
</tr>
<tr>
<td>관측요소</td>
<td>측정주기</td>
<td>자료통계 방법</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 에어로졸 질량농도 (β-ray 흡수법) | 1시간 | <자료품질관리>
- 장비의 간-교정시 안정화 단계까지의 자료는 제거
- 기기상태 검사: 6자리 상태 코드가 '000000'인 경우만 '정상', 나머지는 '의심'
- 계측한계: 1 ~ 5,000 μg/m²를 벗어나면 '오류'
- 시간연속성 검사
 - 현제(t)와 직전(t-1) 또는 직후(t+1)에 관측된 PM10 질량농도의 변동량이 '50+0.15×PM10'을 초과할 경우 '의심'
 \[\Delta PM10 = \min(|PM10(t) - PM10(\pm1)|) \]
- 뒤의 값 검사: 3개의 연속적인 PM10 자료의 차이를 이용하여 식 (2)과 같이 \(d\)를 구한 후 식 (3)의 조건을 만족하지 않은 경우 '의심'으로 분류.
 \[d = |PM10(t) - PM10(\pm1)| - |PM10(t+1) - PM10(t)| \]
 \[d \geq Md - z \times MAD \quad \text{or} \quad d \leq Md + z \times MAD \]
 \[MAD = \text{median}(d - Md) \]
- 현재 PM10 질량농도가 지난 1시간 평균의 20%를 초과하면 '의심'
- 지속성 검사: 과거 60분 동안 농도의 변동량이 0일 경우 '정상'
- 정상성 검사: 인근 동일 요소 산출물 비교하여 차이가 50% 초과할 경우 '의심'
- '의심'으로 분류된 자료는 분석 담당자가 관비유지보수 임지를 참조하여 '정상' 또는 '오류'로 최종 확인하여 '정상'으로 분류된 자료만 통계처리함.

<통계방법>
- 자료품질관리를 통과한 원시자료(5분)가 1시간에 75% 이상일 때 시간평균값 산출, 시간평균 자료가 없을 또는 연 전체의 75% 이상일 때 월평균, 연평균 산출
| 응결핵 수농도 (0.01~3μm) | 1시간 | <자료품질관리>
- 기기상태 검사: 'Instrumental error'가 'None'일 경우만 '정상'
- 계측한계: 구간별 수농도가 10,000 개/m² 이상일 때 '오류'(관측시 회석기(dilutor) 사용하여 1/20 회석된 농도를 처리함)
- '의심'으로 분류된 자료는 분석 담당자가 정비유지보수 임지를 참조하여 '정상' 또는 '오류'로 최종 확인하여 '정상'으로 분류된 자료만 통계처리함.

<통계방법>
- 자료품질관리를 통과한 원시자료(5분)가 1시간에 30% 이상일 때 시간평균값 산출, 시간평균 자료가 없을 또는 연 전체의 30% 이상일 때 월평균, 연평균 산출.
<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
</table>
| 자외선A | 10분 | - 매일 10분 간격으로 144개 원시 파일 생성
 * 자외선A: 10분 누적값 (단위: J/cm²)
 * 자외선B: 10분 누적값 (단위: MED)

- 원시자료 품질관리 수행
 * 관측오류 결측 처리
 * 계측 하한, 계측 상한 값을 벗어날 경우 오류처리
 * 기기상태 오류: 관측센서온도가 24°C ∼ 26°C를 벗어날 경우 오류 처리
 * Tropospheric Ultraviolet-Visible(TUV) radiatioon model(V. 5.3) 값 보다 클 경우 오류 값 처리
 * The spike detection method (Papale et al., 2006, Hong et al., 2009)
 - 연속된 3개의 관측 값의 차이를 이용한 튀는 값 처리
 - 관측값 차이의 절댓값의 중앙값(median)으로부터 벗어난 정도를 이용하여 튀는 값 처리

- 품질관리를 통과한 원시자료가 80% 이상일 때 자외선A, 자외선B 시간 누적값, 시간 최댓값 산출
 * 1시간 누적값: 자외선A (단위: MJ/m²), 자외선B (단위: kJ/m²)
 * 1시간 최댓값: 자외선A, 자외선B (W/m²)

- 태양천정각(Solar Zenith Angle) < 90°인 시간자료 중 80% 이상 존재할 때 자외선A, 자외선B 일누적값, 일 최댓값 산출
 * 일누적값: 자외선A (단위: MJ/m²), 자외선B (단위: kJ/m²)
 * 일 최댓값: 자외선A, 자외선B (W/m²)

- 매월 80% 이상의 일 자료가 있을 경우 일누적값의 월 평균값, 일 최댓값의 월평균 산출

- 매년 80% 이상의 월 자료가 있을 경우 연 평균값 산출

| 자외선B | 10분 | - 태양천정각(Solar Zenith Angle) < 90°인 시간자료 중 80% 이상 존재할 때 자외선A, 자외선B 시간 누적값, 시간 최댓값 산출
 * 1시간 누적값: 자외선A (단위: MJ/m²), 자외선B (단위: kJ/m²)
 * 1시간 최댓값: 자외선A, 자외선B (W/m²)

- 매월 80% 이상의 일 자료가 있을 경우 일누적값의 월 평균값, 일 최댓값의 월평균 산출

- 매년 80% 이상의 월 자료가 있을 경우 연 평균값 산출 |
대기복사

<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>직달일사/산란일사</td>
<td>1시간</td>
<td>- BSRN에서 권고하는 QC 3단계 적용
[시간평균]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 태양·지구복사: QC를 거친 1분 관측 데이터가 한 시간에 80% 이상 존재할 경우 시간평균값 계산</td>
</tr>
<tr>
<td>태양복사</td>
<td>1시간</td>
<td>[일평균]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 태양복사: 태양천정각(Solar Zenith Angle) < 90°인 시간 중 시간평균 데이터가 80% 이상 존재한 날의 24시간 평균값</td>
</tr>
<tr>
<td>지구복사</td>
<td>1시간</td>
<td>[월평균]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 지구복사: 24시간 중 시간평균 데이터가 80% 이상 존재한 날의 24시간 평균값</td>
</tr>
<tr>
<td>순복사</td>
<td>1시간</td>
<td>[연평균]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 일평균이 전체 날수의 50% 이상 존재한 달의 일평균에 대한 평균값</td>
</tr>
</tbody>
</table>

성층권 오존

<table>
<thead>
<tr>
<th>관측요소</th>
<th>측정주기</th>
<th>자료통계 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>오존전량</td>
<td>하루</td>
<td><오존분광도계></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 태양광 중 6개 파장에 대한 광도를 참조 값과 비교하여 오존전량 산출</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 태양의 위치에 따라 하루 10회 이상 관측하여 오차가 적은 유효한 관측 값을 평균하여 그날의 오존전량으로 산출 (직달일사 만 유효)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 일평균 오존전량(오존분광도계 OZAVG 파일 일 대푯값) 중 평균값이 50 DU 이하인 경우 => 일 대푯값</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 월평균: 매월 10일 이상의 일 자료가 있음 경우 일 대푯값의 평균값</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 연평균: 월평균이 6개월 이상 존재할 경우의 월평균에 대한 평균값</td>
</tr>
<tr>
<td>오존연직분포</td>
<td>1회/1주</td>
<td><ECC 오존분석></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 관측값 중 배스트 프로파일 선택하여 월별, 계절별 분석 수행</td>
</tr>
<tr>
<td>관측 항목</td>
<td>종류</td>
<td>통계항목</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>기온</td>
<td>평균값</td>
<td>평균기온</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>일최고기온/일최저기온</td>
</tr>
<tr>
<td></td>
<td>도수</td>
<td>일평균기온/일최고기온/ 일최저기온의 계급별일수</td>
</tr>
<tr>
<td></td>
<td>현상의 시작일, 마지막일</td>
<td>일평균기온/일최고기온/ 일최저기온의 현상발생일</td>
</tr>
<tr>
<td></td>
<td>최장계속기간</td>
<td>일평균기온/일최고기온/ 일최저기온의 최장계속기간</td>
</tr>
<tr>
<td>강수량</td>
<td>합계값</td>
<td>일강수량</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>10분간 최대강수량</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>1시간 최대강수량</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>일강수량</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>2일/3일이상 연속 최대강수량 및 기간</td>
</tr>
<tr>
<td></td>
<td>도수</td>
<td>일강수량의 계급별 일수</td>
</tr>
<tr>
<td></td>
<td>도수</td>
<td>1시간강수량의 계급별 일수</td>
</tr>
<tr>
<td></td>
<td>도수</td>
<td>10분강수량의 계급별 일수</td>
</tr>
<tr>
<td></td>
<td>도수</td>
<td>일강수량</td>
</tr>
<tr>
<td></td>
<td>계속 시간</td>
<td>강수계속시간의 합계값</td>
</tr>
<tr>
<td>바람</td>
<td>평균값</td>
<td>평균풍속</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>일최대풍향/풍속(풍향 16방위)</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>일최대풍속은 16방위의 평균</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>일최대풍속은 16방위의 평균</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>최대풍향</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>최대풍속의 계급별 일수</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>평균질 및 최대풍속</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>평균값 및 최대풍속의 백분율</td>
</tr>
<tr>
<td></td>
<td>극값</td>
<td>평균값 및 최대풍속의 백분율</td>
</tr>
</tbody>
</table>